Skip to main content
Log in

The temperature-dependent fracture strength model for ultra-high temperature ceramics

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Breaking down the entire structure of a material implies severing all the bonds between its atoms either by applying work or by heat transfer. Because bond-breaking is indifferent to either means, there is a kind of equivalence between heat energy and strain energy. Based on this equivalence, we assume the existence of a constant maximum storage of energy that includes both the strain energy and the corresponding equivalent heat energy. A temperature-dependent fracture strength model is then developed for ultra-high temperature ceramics (UHTCs). Model predictions for UHTCs, HfB2, TiC and ZrB2, are presented and compared with the experimental results. These predictions are found to be largely consistent with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang C.R., Yang J.M., Hoffman W.P.: Thermal stability of refractory carbide/boride composites. Mater. Chem. Phys. 74(3), 272–281 (2002)

    Article  Google Scholar 

  2. Gasch M., Ellerby D., Irby E., Beckman S., Gusman M., Johnson S.: Processing, properties and arc-jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics. J. Mater. Sci. 39, 5925–5937 (2004)

    Article  Google Scholar 

  3. Opeka M.M., Talmy I.G., Wuchina E.J., Zaykoski J.A., Causey S.J.: Mechanical, thermal and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19(13–14), 2405–2414 (1999)

    Article  Google Scholar 

  4. Bull, J., White, M.J., Kaufman, L.: Ablation resistant zirconium and hafnium ceramics. US Patent 5,750,450 (1998)

  5. Wuchina E., Opeka M., Causey S., Buesking K., Spain J., Cull A., Routbort J., Guitierrez-mora F.: Designing for ultrahigh-temperature applications: The mechanical and thermal properties of HfB2, HfC x HfN x and αHf(N). J. Mater. Sci. 39, 5939–5949 (2004)

    Article  Google Scholar 

  6. Song G.M., Zhou Y., Kang S.J.: Experimental description of thermomechanical properties of carbon fiber-reinforced TiC matrix composites. Mater. Des. 24(8), 639–646 (2003)

    Google Scholar 

  7. Melendez-Martinez J.J., Dominguez-Rodriguez A., Monteverde F., Melandri C., De Portu G.: Characterisation and high temperature mechanical properties of zirconium boride-based materials. J. Eur. Ceram. Soc. 22(14–15), 2543–2549 (2002)

    Article  Google Scholar 

  8. Kinoshiya T., Munekawa S., Tanaka S.I.: Effect of grain boundary segregation on high-temperature strength of hot-pressed silicon carbide. Acta Materialia 45(2), 801–809 (1997)

    Article  Google Scholar 

  9. Kim Y.W., Chun Y.S., Nishimura T., Mitomo M., Lee Y.H.: High-temperature strength of silicon carbide ceramics sintered with rare-earth oxide and aluminum nitride. Acta Materialia 55(2), 727–736 (2007)

    Article  Google Scholar 

  10. Fahrenholtz W.G., Hilmas G.E., Chamberlain A.L., Zimmermann J.W.: Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics. J. Mater. Sci. 39, 5951–5957 (2004)

    Article  Google Scholar 

  11. Green D.J.: An Introduction to the Mechanical Properties of Ceramics. Cambridge Solid State Science Series, Cambridge (1998)

    Book  Google Scholar 

  12. Volokh K.Y.: Hyperelasticity with softening for modeling materials failure. J. Mech. Phys. Solids 55(10), 2237–2264 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Knacke O., Kubaschewski O.: Thermochemical Properties of Inorganic Substances, 2nd edn. Springer, Berlin (1991)

    Google Scholar 

  14. Ye, D.L.: Practical Handbook of Thermodynamic Data for Inorganic Compounds, 1st edn, pp. 980–981. Metallurgy Industry Publishing House, Beijing (1981) (in Chinese)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daining Fang.

Additional information

The project was supported by the National Natural Science Foundation of China (90505015 and 10702035).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Yang, F. & Fang, D. The temperature-dependent fracture strength model for ultra-high temperature ceramics. Acta Mech Sin 26, 235–239 (2010). https://doi.org/10.1007/s10409-009-0326-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0326-7

Keywords

Navigation