Skip to main content
Log in

Prediction of grain size and yield strength of Mg-7Sn-1Al-1Zn alloys extruded at various temperatures and speeds

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper analyzed the relationships between the extrusion conditions, grain size, and yield strength of an Mg-7Sn-1Al-1Zn alloy, which was extruded at different initial billet temperatures and ram speeds, and developed empirical models to predict the grain size and yield strengths. The results revealed that grain size increases as the extrusion temperature and ram speed increase, resulting in a decrease of the tensile and compressive yield strengths due to reduced effect of grain boundary strengthening. It was also found that the exit temperature is a key determinant of grain size and yield strength, i.e. as the exit temperature decreases, the grain size decreases while the tensile and compressive yield strengths increase. The grain size and yield strength prediction models, which provide results as a function of temperature and strain rate, were developed by considering the extrusion temperature and speed dependencies of the exit temperature, and the predicted results showed a good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Kang, S. S. Park, and N. J. Kim, Mater. Sci. Eng. A 413, 555 (2005).

    Article  Google Scholar 

  2. T. T. Sasaki, K. Yamamoto, T. Homma, S. Kamado, and K. Hono, Scripta Mater. 59, 1111 (2008).

    Article  Google Scholar 

  3. T. T. Sasaki, J. D. Ju, K. Hono, and K. S. Shin, Scripta Mater. 61, 80 (2009).

    Article  Google Scholar 

  4. S. H. Park, H. S. Kim, and B. S. You, Korean J. Met. Mater. 51, 637 (2013).

    Google Scholar 

  5. S. S. Park, W. N. Tang, and B. S. You, Mater. Lett. 64, 31 (2010).

    Article  Google Scholar 

  6. D. H. Kim, H. K. Lim, Y. K. Kim, J. S. Kyeong, W. T. Kim, and D. H. Kim, Met. Mater. Int. 17, 383 (2011).

    Article  Google Scholar 

  7. H. Yu, S. H. Park, B. S. You, Y. M. Kim, H. S. Yu, and S. S. Park, Mater. Sci. Eng. A 583, 25 (2013).

    Article  Google Scholar 

  8. M. R. Barnett, A. G. Beer, D. Atwell, and A. Oudin, Scripta Mater. 51, 19 (2004).

    Article  Google Scholar 

  9. H. Yu, H. Y. G. Min, S. S. Park, B. S. You, and Y. M. Kim, Met. Mater. Int. 19, 651 (2013).

    Article  Google Scholar 

  10. B. P. Zhang, L. Geng, L. J. Huang, X. X. Zhang, and C. C. Dong, Scripta Mater. 63, 1024 (2010).

    Article  Google Scholar 

  11. M. Hirano, M. Yamasaki, K. Hagihara, K. Higashida, and Y. Kawamura, Mater. Trans. 51, 1640 (2010).

    Article  Google Scholar 

  12. A. Galiyev, R. Kaibyshev, and G. Gottstein, Acta Mater. 49, 1199 (2001).

    Article  Google Scholar 

  13. S. I. Kim and Y. C. Yoo, Mater. Sci. Eng. A 311, 108 (2001).

    Article  Google Scholar 

  14. A. Mwembela, E. V. Konopleva, and H. J. McQueen, Scripta Mater. 37, 1789 (1997).

    Article  Google Scholar 

  15. S. Spigarelli, M. Cabibbo, T. Evangelista, M. Talianker, and V. Ezersky, Mater. Sci. Eng. A 289, 172 (2000).

    Article  Google Scholar 

  16. H. J. McQueeen and N. D. Ryan, Mater. Sci. Eng. A 322, 43 (2002).

    Article  Google Scholar 

  17. P. Feltham, Met. Tret. 23, 440 (1956).

    Google Scholar 

  18. P. Changizian, A. Zarei-Hanzaki, and H. R. Abedi, Mater. Sci. Eng. A 558, 44 (2012).

    Article  Google Scholar 

  19. Y. V. R. K. Prasad and K. P. Rao, Mater. Sci. Eng. A 487, 316 (2008).

    Article  Google Scholar 

  20. G. R. Ebrahimi, A. R. Maldar, R. Ebrahimi, and A. Davoodi, J. Alloys Compd. 509, 2703 (2011).

    Article  Google Scholar 

  21. S. W. Xu, S. Kamado, and T. Homma, Scripta Mater. 63, 293 (2010).

    Article  Google Scholar 

  22. G. Liu, J. Zhou, and J. Duszczyk, Mater. Proc. Technol. 186, 191 (2007).

    Article  Google Scholar 

  23. M. R. Barnett, Z. Keshavarz, A. G. Beer, and D. Atwell, Acta Mater. 52, 5093 (2004).

    Article  Google Scholar 

  24. S. H. Park, H. S. Kim, J. H. Bae, C. D. Yim, and B. S. You, Scripta Mater. 69, 250 (2013).

    Article  Google Scholar 

  25. J. D. Robson, N. Stanford, and M. R. Barnett, Acta Mater. 59, 1945 (2011).

    Article  Google Scholar 

  26. J. F. Nie, Scripta Mater. 48, 1009 (2003).

    Article  Google Scholar 

  27. S. H. Park, S. G. Hong, C. S. Lee, Mater. Sci. Eng. A 570, 149 (2013).

    Article  Google Scholar 

  28. W. Z. Chen, X. Wang, M. N. Kyalo, E. D. Wang, and Z. Y. Liu, Mater. Sci. Eng. A 580, 77 (2013).

    Article  Google Scholar 

  29. Y. Xin, M. Wang, Z. Zeng, M. Nie, and Q. Liu, Scripta Mater. 66, 25 (2012).

    Article  Google Scholar 

  30. S. G. Hong, S. H. Park, and C. S. Lee, Acta Mater. 58, 5873 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Hyuk Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.H., Kim, H.S. & You, B.S. Prediction of grain size and yield strength of Mg-7Sn-1Al-1Zn alloys extruded at various temperatures and speeds. Met. Mater. Int. 20, 291–296 (2014). https://doi.org/10.1007/s12540-014-2011-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-2011-z

Key words

Navigation