Skip to main content
Log in

Investigation of Carburization and Melting Behavior of Fully Reduced LRI and IOS on Coke Substrates

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the course of developing hydrogen-enriched blast furnace ironmaking operation, the carburization and melting behavior of the fully reduced low-reduced iron (LRI) and the iron ore sinter (IOS) on the coke substrate were investigated at 1773 and 1823 K under 40%CO–40%N2–20%H2 gas atmosphere. The LRI sample was not carburized at 1773 K due to the inhibition ash layer on the coke surface; consequently, it was not melted. Although the reduced iron of the LRI sample was melted at 1823 K, it was not carburized due to the prevention of the ash layer. On the other hand, the IOS sample was carburized to be melted at 1773 and 1823 K. The self-fluxing slag cleaned the ash layer on the coke surface, enabling the carburization and melting of the reduced iron. It is concluded that the liquid slag formation accelerated the carburization of the reduced iron, whereas the liquid metal formation did not increase the carburization rate. Due to the difficulty in carburization and melting of LRI, the use of LRI in the hydrogen-enriched blast furnace operation can be limited.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. IEA, Iron and Steel Technology Roadmap (IEA Publications, 2020). https://www.iea.org/reports/iron-and-steel-technology-roadmap. Accessed 29 Sept 2023

  2. S. Tonomura, Energy Procedia 37, 7160 (2013). https://doi.org/10.1016/j.egypro.2013.06.653

    Article  CAS  Google Scholar 

  3. S. Watakabe, K. Miyagawa, S. Matsuzaki, T. Inada, Y. Tomita, K. Saito, M. Osame, P. Sikström, L.S. Ökvist, J.-O. Wikstrom, ISIJ Int. 53, 2065 (2013). https://doi.org/10.2355/isijinternational.53.2065

    Article  CAS  Google Scholar 

  4. H. Mandovaa, P. Patrizio, S. Leduc, J. Kjärstad, C. Wang, E. Wetterlund, F. Kraxner, W. Gale, J. Clean. Prod. 218, 118 (2019). https://doi.org/10.1016/j.jclepro.2019.01.247

    Article  Google Scholar 

  5. V. Vogl, O. Olsson, B. Nykvist, Joule 5, 2646 (2021). https://doi.org/10.1016/j.joule.2021.09.007

    Article  CAS  Google Scholar 

  6. D. Raabe, Chem. Rev. 123, 2436 (2023). https://doi.org/10.1021/acs.chemrev.2c00799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. W. Kim, I. Sohn, Joule 6, 2228 (2022). https://doi.org/10.1016/j.joule.2022.08.010

    Article  Google Scholar 

  8. T. Ariyama, K. Takahashi, Y. Kawashiri, T. Nouchi, J. Sustain. Metall. 5, 276 (2019). https://doi.org/10.1007/s40831-019-00219-9

    Article  Google Scholar 

  9. T. Buergler, J. Prammer, Berg Huettenmaenn Monatsh 164, 447 (2019). https://doi.org/10.1007/s00501-019-00908-8

    Article  CAS  Google Scholar 

  10. D. Kushnir, T. Hansen, V. Vogl, M. Ahman, J. Clean. Prod. 242, 118185 (2020). https://doi.org/10.1016/j.jclepro.2019.118185

    Article  CAS  Google Scholar 

  11. S.H. Yi, M.E. Choi, D.H. Kim, C.K. Ko, W. Park, S.Y. Kim, Ironmak. Steelmak. 46, 625 (2019). https://doi.org/10.1080/03019233.2019.1641682

    Article  CAS  Google Scholar 

  12. S.H. Yi, W.J. Lee, Y.S. Lee, W.H. Kim, Korean J. Met. Mater. 59, 41 (2021). https://doi.org/10.3365/KJMM.2021.59.1.41

    Article  CAS  Google Scholar 

  13. E.T. Turkdogan, J.V. Vinters, Metall. Mater. Trans. B 2, 3175 (1971). https://doi.org/10.1007/BF02814970

    Article  CAS  Google Scholar 

  14. E.T. Turkdogan, R.G. Olsson, J.V. Vinters, Metall. Mater. Trans. B 2, 3189 (1971). https://doi.org/10.1007/BF02814971

    Article  CAS  Google Scholar 

  15. D. Ghosh, K. Roya, A. Ghosh, Trans ISIJ. 26, 186 (1986). https://doi.org/10.2355/isijinternational1966.26.186

    Article  CAS  Google Scholar 

  16. C. Lan, S. Zhang, X. Liu, Q. Lyu, M. Jiang, Int. J. Hydrog. Energy 45, 14255 (2020). https://doi.org/10.1016/j.ijhydene.2020.03.143

    Article  CAS  Google Scholar 

  17. H.M. Long, H.T. Wang, W. Zhao, J.X. Li, Z.G. Liu, P. Wang, Ironmak. Steelmak. 43, 450 (2016). https://doi.org/10.1080/03019233.2015.1108480

    Article  CAS  Google Scholar 

  18. D. Jang, M. Shin, J.S. Oh, H.S. Kim, S.H. Yi, J. Lee, ISIJ Int. 54, 1251 (2014). https://doi.org/10.2355/isijinternational.54.1251

    Article  CAS  Google Scholar 

  19. D.D. Geleta, J. Lee, Metall. Mater. Trans. B 49, 3594 (2018). https://doi.org/10.1007/s11663-018-1368-7

    Article  CAS  Google Scholar 

  20. D.D. Geleta, M.I.H. Siddiqui, J. Lee, Metall. Mater. Trans. B 51, 102 (2020). https://doi.org/10.1007/s11663-019-01750-6

    Article  CAS  Google Scholar 

  21. D.D. Geleta, J. Lee, Metall. Mater. Trans. B 52, 2883 (2021). https://doi.org/10.1007/s11663-021-02249-9

    Article  CAS  Google Scholar 

  22. J. Park, H. Park, D.D. Geleta, W.H. Kim, J. Lee, Metall. Mater. Trans. B 52, 3561 (2021). https://doi.org/10.1007/s11663-021-02295-3

    Article  CAS  Google Scholar 

  23. J.S. Oh, J. Lee, Korean J. Met. Mater. 55, 566 (2017). https://doi.org/10.3365/KJMM.2017.55.8.566

    Article  CAS  Google Scholar 

  24. R.J. Fruehan, Metall. Trans. 4, 2123 (1973). https://doi.org/10.1007/BF02643276

    Article  CAS  Google Scholar 

  25. S.R. Shatynski, H.J. Grabke, Arch. Eisenhüttenwes. 49, 129 (1978). https://doi.org/10.1002/srin.197805109

    Article  CAS  Google Scholar 

  26. X. Zhang, R. Takahashi, T. Akiyama, J. Yagi, Tetsu-to-Hagané 83, 299 (1997). https://doi.org/10.2355/tetsutohagane1955.83.5_299

    Article  CAS  Google Scholar 

  27. Y. Sasaki, R. Asano, K. Ishii, ISIJ Int. 41, 209 (2001). https://doi.org/10.2355/isijinternational.41.209

    Article  CAS  Google Scholar 

  28. R. Asano, Y. Sasaki, K. Ishii, ISIJ Int. 42, 121 (2002). https://doi.org/10.2355/isijinternational.42.121

    Article  CAS  Google Scholar 

  29. T. Murakami, H. Fukuyama, K. Nagata, ISIJ Int. 41, 416 (2001). https://doi.org/10.2355/isijinternational.41.416

    Article  CAS  Google Scholar 

  30. T. Murakami, K. Nagata, Miner. Process. Extr. Metall. Rev. 24, 253 (2003). https://doi.org/10.1080/714856824

    Article  CAS  Google Scholar 

  31. M. Shin, S. Min, J. Lee, J.G. Park, D.J. Min, Met. Mater. Int. 18, 1041 (2012). https://doi.org/10.1007/s12540-012-6018-z

    Article  CAS  Google Scholar 

  32. M. Shin, J.S. Oh, J. Lee, S. Jung, J. Lee, Met. Mater. Int. 20, 1139 (2014). https://doi.org/10.1007/s12540-014-6018-2

    Article  CAS  Google Scholar 

  33. D. Jang, Y. Kim, M. Shin, J. Lee, Metall. Mater. Trans. B 43, 1308 (2012). https://doi.org/10.1007/s11663-012-9724-5

    Article  CAS  Google Scholar 

  34. K. Ohno, S. Tsurumaru, A. Babich, T. Maeda, D. Senk, ISIJ Int. 55, 1245 (2015). https://doi.org/10.2355/isijinternational.55.1245

    Article  CAS  Google Scholar 

  35. M. Shin, J.S. Oh, J. Lee, ISIJ Int. 55, 2056 (2015). https://doi.org/10.2355/isijinternational.ISIJINT-2015-115

    Article  CAS  Google Scholar 

  36. H.S. Kim, S.H. Lee, Y. Sasaki, ISIJ Int. 50, 71 (2001). https://doi.org/10.2355/isijinternational.50.71

    Article  Google Scholar 

  37. K. Ohno, T. Maeda, K. Nishioka, M. Shimizu, ISIJ Int. 50, 53 (2010). https://doi.org/10.2355/isijinternational.50.53

    Article  CAS  Google Scholar 

  38. K. Ohno, S. Miura, T. Maeda, K. Kunitomo, ISIJ Int. 59, 655 (2019). https://doi.org/10.2355/isijinternational.ISIJINT-2018-383

    Article  CAS  Google Scholar 

  39. A.N. Grundy, I.H. Jung, A.D. Pelton, S.A. Decterov, Int. J. Mater. Res. 99, 1195 (2008). https://doi.org/10.3139/146.101753

    Article  CAS  Google Scholar 

  40. K. Ohno, S. Natsui, S. Sukenaga, K. Tonya, T. Maeda, K. Kunitomo, ISIJ Int. 60, 2695 (2020). https://doi.org/10.2355/isijinternational.ISIJINT-2020-218

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Strategic Technology Development Program (20212010100040, Development of hybrid ironmaking processes for lower CO2 emissions) funded by the Ministry of Trade, Industry & Energy (MI, Korea) and Korea Institute for Advancement of Technology(KIAT) grant funded by the Korea Government(MOTIE)(P0002019, The Competency Development Program for Industry Specialist). JL was supported by the Korea University Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonho Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Kim, M., Suh, Ik. et al. Investigation of Carburization and Melting Behavior of Fully Reduced LRI and IOS on Coke Substrates. Met. Mater. Int. 30, 1095–1105 (2024). https://doi.org/10.1007/s12540-023-01551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01551-2

Keywords

Navigation