Skip to main content
Log in

Lump Iron Ore Pre-heating Treatment to Improve Softening-Melting Performance and Reduce Energy Consumption in Ironmaking Process

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To reduce the proportion of high energy consumption and pollution processes such as sintering and pelletizing, and to make full use of the waste heat resources of steel plant, a lump ore pre-heating treatment is proposed. The mineralogical properties of mainstream lump iron ores were first analyzed using chemical analysis, XRD-Rietveld, BET testing and thermogravimetry. Subsequent experiments investigated the decrepitation behavior of lump ore and the feasibility of pre-heating treatment, and finally the utilization of waste heat resources was discussed in some detail as well. The results show that lump iron ore decrepitation is due to the presence of goethite FeO(OH), which starts to decompose at 200–300°C and almost completely removes its crystal water before 500°C. After pre-heating treatment at 4°C/min temperature rise, lump iron ores almost no longer decrepitate, and the reducibility, softening-melting performance and gas permeability in blast furnace are significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu and Y.S. Zhou, Int. J. Miner. Metall. Mater. 27, 713. (2020).

    Article  Google Scholar 

  2. J.A. Castro, G.A. Medeiros, E.M. Oliveira and H. Nogami, J. Sustain. Metall. 6, 281. (2020).

    Article  Google Scholar 

  3. M. Kazemi and D. Sichen, J. Sustain. Metall. 2, 73. (2016).

    Article  Google Scholar 

  4. S. Cetinkaya and S. Eroglu, JOM 69, 993. (2017).

    Article  Google Scholar 

  5. A. Shams, and F. Moazeni, JOM 67, 2681. (2015).

    Article  Google Scholar 

  6. X. Zhang, K. Jiao, J. Zhang, and Z. Guo, J. Clean. Prod. 306, 127259. (2021).

    Article  Google Scholar 

  7. H.B. Luengen, M. Peters, and P. Schmöle, Iron Steel Technol. 9, 63. (2012).

    Google Scholar 

  8. I.F.J.A. Kurunov, Metallurgist 59, 562. (2015).

    Article  Google Scholar 

  9. D. Zhou, K. Xu, G. Xu, and X. Jiang, Ironmak Steelmak. 47, 316. (2018).

    Article  Google Scholar 

  10. L. Yang, in Ferrous burden mix in world blast furnaces. Paper presented at the China Iron and Steel Annual Conference 2007, Chengdu, China, 15–17 Nov 2007

  11. S.P.E. Forsmo, S.E. Forsmo, P.O. Samskog, and B.M.T. Björkman, Powder Technol. 183, 247. (2008).

    Article  Google Scholar 

  12. L. Lu and J. Manuel, JOM 73, 306. (2021).

    Article  Google Scholar 

  13. K. Wang, H. Tian, S. Hua, C. Zhu, J. Gao, Y. Xue, J. Hao, Y. Wang, and J. Zhou, Sci Total Environ. 559, 7. (2016).

    Article  Google Scholar 

  14. Z. Liu, L. Niu, S. Zhang, G. Dong, Y. Wang, G. Wang, J. Kang, L. Chen, and J. Zhang, ISIJ Int. 60, 2400. (2020).

    Article  Google Scholar 

  15. W. Lv, Z. Sun, and Z. Su, J. Clean. Prod. 233, 1314. (2019).

    Article  Google Scholar 

  16. L. Yi, Z. Huang, T. Jiang, L. Wang, and T. Qi, Powder Technol. 269, 290. (2015).

    Article  Google Scholar 

  17. R. Xu, J. Zhang, H. Zuo, K. Jiao, Z. Hu, and X. Xing, J. Iron Steel Res. Int. 22, 1. (2015).

    Article  Google Scholar 

  18. M. Mizutani, T. Nishimura, T. Orimoto, K. Higuchi, S. Nomura, K. Saito, and E. Kasai, ISIJ Int. 58, 1413. (2018).

    Article  Google Scholar 

  19. S. Wu, L. Wang, Y. Lu, and K. Gu, Steel Res. Int. 89, 1800041. (2018).

    Article  Google Scholar 

  20. C.E. Loo, L.T. Matthews, and D.P. Odea, ISIJ Int. 51, 930. (2011).

    Article  Google Scholar 

  21. K. Aotsuka, T. Kawaguchi, and Y. Nimiya, ISIJ Int. 50, 1511. (2010).

    Article  Google Scholar 

  22. T. Nishimura, K. Higuchi, M. Naito, and K. Kunitomo, ISIJ Int. 51, 1316. (2011).

    Article  Google Scholar 

  23. J. Small, A. Adema, K. Andreev, and E. Zinngrebe, Met. Basel 8, 1082. (2018).

    Google Scholar 

  24. Y. Lu, S. Wu, L. Niu, Z. Liu, H. Zhou, Z. Hong, and S. Song, Ironmak Steelmak. 48, 477. (2021).

    Article  Google Scholar 

  25. G.L. Faria, N. Jannotti, and F.G. Araújo, Int. J. Miner. Process. 102, 150. (2012).

    Article  Google Scholar 

  26. A. Kemppainen, K. Ohno, M. Iljana, O. Mattila, T. Paananen, E. Heikkinen, T. Maeda, K. Kunitomo, and T. Fabritius, ISIJ Int. 55, 2039. (2015).

    Article  Google Scholar 

  27. Y. Qie, Q. Lyu, X. Liu, J. Li, C. Lan, S. Zhang, and C. Yan, Metall. Mater. Trans. B 49, 2622. (2018).

    Article  Google Scholar 

  28. W. Yang, Z. Zhou, A. Yu, and D. Pinson, Powder Technol. 279, 134. (2015).

    Article  Google Scholar 

  29. K. Higuchi, M. Naito, M. Nakano, and Y. Takamoto, ISIJ Int. 44, 2057. (2004).

    Article  Google Scholar 

  30. S. Wu, B. Tuo, L. Zhang, K. Du, and Y. Sun, Steel Res. Int. 85, 233. (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Postdoctoral Fund of University of Science and Technology Beijing (2021M690369), Guangdong Basic & Applied Basic Research Fund Joint Regional Funds-Youth Foundation Projects (2020A1515111008) and the Central Universities Foundation of China (06500170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengjian Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 814 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, L., Zhang, J., Wang, Y. et al. Lump Iron Ore Pre-heating Treatment to Improve Softening-Melting Performance and Reduce Energy Consumption in Ironmaking Process. JOM 74, 2733–2741 (2022). https://doi.org/10.1007/s11837-022-05301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05301-4

Navigation