Skip to main content
Log in

Surface Characteristics of Ti–6Al–4V Alloy Based on the Process Parameter and Abrasive Process in the Laser Powder Bed Fusion

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The surface quality of three-dimensional products manufactured via laser powder bed fusion (L-PBF) depends on solidification conditions, the staircase effect caused by layer-by-layer build-up processes, and the shape and size of un-melted particles. Although the surface quality can be slightly improved by optimizing process parameters such as layer thickness, laser power, hatch spacing and scan speed, the effect is quite limited, and thus additional post-treatment processes are required for dramatic improvement. In the paper, the effects of layer thickness (30, 60 µm) and build angle (0°, 15°, 30°, 45°, 60°, 75°, 90°) on the surface roughness of the Ti–6Al–4V alloy parts manufactured by L-PBF process were analyzed. In addition, in order to investigate the effect of blasting conditions on the surface roughness, the specimens were post-treated by various sizes of abrasives (#60, #80, #100, #120, #150), blasting angle (45°, 90°), and pressures (0.3, 0.4, 0.5 MPa), and the surface roughness of each specimen was measured and compared. The results indicate that the higher is the building angle and thinner is the layer thickness, the better is the surface quality; however, the difference tends to decrease via sandblasting, and the effect depends on the process conditions. Sandblasting process improved the surface roughness up to 62% and 71% compared as-built conditions for the layer thickness 30 µm and 60 µm for each. As a result, the surface roughness of minimum 5.0 µm and 3.8 µm for the layer thickness 60 µm and 30 µm was achieved in the case of building angle 90°.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. T. Duda, L.V. Raghavan, IFAC-PapersOnLine 49, 103 (2016). https://doi.org/10.1016/j.ifacol.2016.11.111

    Article  Google Scholar 

  2. A. Majeed, A. Ahmed, A. Salam, M.Z. Sheikh, Int. J. Lightweight Mater. Manuf. 2, 288 (2019). https://doi.org/10.1016/j.ijlmm.2019.08.001

    Article  Google Scholar 

  3. M.C. Sow, T. De Terris, O. Castelnau, Z. Hamouche, F. Coste, R. Fabbro, P. Peyre, Addit. Manuf. 36, 101532 (2020). https://doi.org/10.1016/j.addma.2020.101532

    Article  CAS  Google Scholar 

  4. S. Kleszczynski, A. Elspaß, Proc. CIRP 94, 188 (2020). https://doi.org/10.1016/j.procir.2020.09.036

    Article  Google Scholar 

  5. S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, Addit. Manuf. 8, 36 (2015). https://doi.org/10.1016/j.addma.2015.07.001

    Article  Google Scholar 

  6. N. Ur Rahman, L. Capuano, S. Cabeza, M. Feinaeugle, A. Garcia-Junceda, M.B. de Rooij, D.T.A. Matthews, G. Walmag, I. Gibson, G.R.B.E. Römer, Addit. Manuf. 30, 100838 (2019). https://doi.org/10.1016/j.addma.2019.100838

    Article  CAS  Google Scholar 

  7. S. Lou, X. Jiang, W. Sun, W. Zeng, L. Pagani, P.J. Scott, Precis. Eng. 57, 1 (2019). https://doi.org/10.1016/j.precisioneng.2018.09.007

    Article  Google Scholar 

  8. F. Calignano, Virtual Phys. Prototyp. 13, 97 (2018). https://doi.org/10.1080/17452759.2018.1426368

    Article  Google Scholar 

  9. A. Charles, A. Elkaseer, L. Thijs, V. Hagenmeyer, S. Scholz, Appl. Sci. 9, 1256 (2019). https://doi.org/10.3390/app9061256

    Article  CAS  Google Scholar 

  10. I. Koutiri, E. Pessard, P. Peyre, O. Amlou, T. De Terris, J. Mater. Process. Tech. 255, 536 (2018). https://doi.org/10.1016/j.jmatprotec.2017.12.043

    Article  CAS  Google Scholar 

  11. S. Pal, G. Lojen, R. Hudak, V. Rajtukova, T. Brajlih, V. Kokol, I. Drstvenšek, Addit. Manuf. 33, 101147 (2020). https://doi.org/10.1016/j.addma.2020.101147

    Article  CAS  Google Scholar 

  12. M. Kahlin, H. Ansell, D. Basu, A. Kerwin, L. Newton, B. Smith, J.J. Moverare, Int. J. Fatigue 134, 105497 (2020). https://doi.org/10.1016/j.ijfatigue.2020.105497

    Article  CAS  Google Scholar 

  13. L. Chen, B. Richter, X. Zhang, X. Ren, F.E. Pfefferkorn, Addit. Manuf. 32, 101013 (2020). https://doi.org/10.1016/j.addma.2019.101013

    Article  CAS  Google Scholar 

  14. B. Vayssette, N. Saintier, C. Brugger, M. Elmay, E. Pessard, Proc. Eng. 213, 89 (2018). https://doi.org/10.1016/j.proeng.2018.02.010

    Article  CAS  Google Scholar 

  15. L. Denti, A. Sola, Metals 9, 1284 (2019). https://doi.org/10.3390/met9121284

    Article  CAS  Google Scholar 

  16. P. Szymczyk, A. Junka, G. Ziółkowski, D. Smutnicka, M. Bartoszewicz, E. Chlebus, Acta Bioeng. Biomech. 15, 69 (2013). https://doi.org/10.5277/abb130109

    Article  Google Scholar 

  17. C. Yan, L. Hao, A. Hussein, P. Young, D. Raymont, Mater. Des. 55, 533 (2014). https://doi.org/10.1016/j.matdes.2013.10.027

    Article  CAS  Google Scholar 

  18. C. Chen, Y. Hao, X. Bai, J. Ni, S.-M. Chung, F. Liu, I.-S. Lee, Mater. Des. 175, 107824 (2019). https://doi.org/10.1016/j.matdes.2019.107824

    Article  CAS  Google Scholar 

  19. D. Wang, S. Wu, F. Fu, S. Mai, Y. Yang, Y. Liu, C. Song, Mater. Des. 117, 121 (2017). https://doi.org/10.1016/j.matdes.2016.12.060

    Article  CAS  Google Scholar 

  20. C.L.A. Leung, S. Marussi, M. Towrie, J. del Val-Garcia, R.C. Atwood, A.J. Bodey, J.R. Jones, P.J. Withers, P.D. Lee, Addit. Manuf. 24, 647 (2018). https://doi.org/10.1016/j.addma.2018.08.025

    Article  CAS  Google Scholar 

  21. C. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, M.M. Attallah, Acta Mater. 96, 72 (2015). https://doi.org/10.1016/j.actamat.2015.06.004

    Article  CAS  Google Scholar 

  22. S. Liu, J. Liu, J. Chen, X. Liu, Int. J. Therm. Sci. 146, 106075 (2019). https://doi.org/10.1016/j.ijthermalsci.2019.106075

    Article  Google Scholar 

  23. M. Taheri Andani, R. Dehghani, M.R. Karamooz-Ravari, R. Mirzaeifar, J. Ni, Mater. Des. 131, 460 (2017). https://doi.org/10.1016/j.matdes.2017.06.040

    Article  Google Scholar 

  24. H. Salem, L.N. Carter, M.M. Attallah, H.G. Salem, Mater. Sci. Eng. A 767, 138387 (2019). https://doi.org/10.1016/j.msea.2019.138387

    Article  CAS  Google Scholar 

  25. C. Galy, E. Le Guen, E. Lacoste, C. Arvieu, Addit. Manuf. 22, 165 (2018). https://doi.org/10.1016/j.addma.2018.05.005

    Article  CAS  Google Scholar 

  26. E. Maleki, S. Bagherifard, M. Bandini, M. Guagliano, Addit. Manuf. 37, 101619 (2021). https://doi.org/10.1016/j.addma.2020.101619

    Article  CAS  Google Scholar 

  27. M.A. Iglesias-Campos, S. García-Fortes, J.L. Prada-Perez, Mater. Construcc. 64, e021 (2014). https://doi.org/10.3989/mc.2014.02113

    Article  Google Scholar 

  28. B.J. Ho, J.K.-H. Tsoi, D. Liu, C.Y.-K. Lung, H.-M. Wong, J.P. Matinlinna, Int. J. Adhes. Adhes. 62, 25 (2015). https://doi.org/10.1016/j.ijadhadh.2015.06.009

    Article  CAS  Google Scholar 

  29. K.L. Tan, S.H. Yeo, Addit. Manuf. 31, 100938 (2020). https://doi.org/10.1016/j.addma.2019.100938

    Article  CAS  Google Scholar 

  30. B. Jodoin, L. Ajdelsztajn, E. Sansoucy, A. Zúñiga, P. Richer, E.J. Lavernia, Surf. Coat. Tech. 201, 3422 (2006). https://doi.org/10.1016/j.surfcoat.2006.07.232

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundamental Research Program of the Korea Institute of Material Science (PNK8670, KIMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangwoo Kim.

Ethics declarations

Competing Interests

There are no relevant financial or non-financial competing interests to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, W.Y., Yoon, E.Y., Kim, J.H. et al. Surface Characteristics of Ti–6Al–4V Alloy Based on the Process Parameter and Abrasive Process in the Laser Powder Bed Fusion. Met. Mater. Int. 29, 2345–2357 (2023). https://doi.org/10.1007/s12540-022-01378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01378-3

Keywords

Navigation