Skip to main content
Log in

Experimental and Theoretical Investigation on the Forming Limit of 2024-O Aluminum Alloy Sheet at Cryogenic Temperatures

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Cryogenic forming, a new technology used to manufacture aluminum alloy thin-walled parts, has attracted much attention in recent years. This work presents an experimental and theoretical study of 2024-O aluminum alloy sheet forming limit at cryogenic temperatures and provides an effective method for accurate prediction of forming limit curves (FLCs) at cryogenic temperatures. Uniaxial tensile experiments at different temperatures were carried out between 20 °C and − 196 °C to obtain the constitutive equation of the material at cryogenic temperatures. The Marciniak–Kuczynski (M–K) model was used to predict FLCs at cryogenic and room temperatures. The constitutive equation and yield functions are used in the model. The effects of different yield criteria (Mises, Hill-48, Barlat89, Gotoh, and Yld2000-2d) on the prediction results of FLC are analyzed. These prediction results were verified by the Nakazima test, and it was found that the Yld2000-2d yield criterion is the most accurate for FLC prediction. Finally, the M–K model is combined with this criterion to predict the FLC at different temperatures. It was found that the lower the temperature, the higher the FLC curve and the better the sheet formability, and the increase is more obvious at extremely low temperatures.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References:

  1. K. Zheng, D.J. Politis, L. Wang, J. Lin, Int. J. Lightweight Mater. Manuf. 1, 55–80 (2018)

    Google Scholar 

  2. J. Hirsch, T. Nonferr. Metal. Soc. 24, 1995–2002 (2014)

    Article  CAS  Google Scholar 

  3. T. Dursun, C. Soutis, Mater. Design 56, 862–871 (2014)

    Article  CAS  Google Scholar 

  4. R.J.H. Wanhill, Aluminum-Lithium Alloys: Processing, Properties, and Applications, eds. by ed. N. Eswara Prasad, Amol A. Gokhale and R.J.H. Wanhill (Elsevier, Amsterdam, 2014), pp. 503–535

  5. E.S. de Argandona, L. Galdos, R. Ortubay, J. Mendiguren, X. Agirretxe, Key Eng. Mater. 651653, 199–204 (2015)

    Article  Google Scholar 

  6. P.F. Bariani, S. Bruschi, A. Ghiotti, F. Michieletto, CIRP Ann. 62, 251–254 (2013)

    Article  Google Scholar 

  7. G. Palumbo, A. Piccininni, P. Guglielmi, R. Spina, L. Tricarico, D. Sorgente, G. Russello, A. Vitrano, A.L. Franco, Procedia Engineer. 183, 351–356 (2017)

    Article  CAS  Google Scholar 

  8. X. Yang, B. Wang, J. Zhou, L. Dang, W. Xiao, Y. Wang, Int. J. Lightweight Mater. Manuf. 3, 36–42 (2020)

    Google Scholar 

  9. Y. Liu, Z. Zhu, Z. Wang, B. Zhu, Y. Wang, Y. Zhang, Procedia Eng. 207, 723–728 (2017)

    Article  CAS  Google Scholar 

  10. Y. Choi, J. Lee, S.S. Panicker, H. Jin, S.K. Panda, M. Lee, Int. J. Mech. Sci. 170, 105344 (2020)

    Article  Google Scholar 

  11. H. Wang, Y. Luo, P. Friedman, M. Chen, L. Gao, T. Nonferr. Metal. Soc. 22, 1–7 (2012)

    Article  Google Scholar 

  12. D. Park, S. Choi, J. Kim, J. Lee, Cryogenics 68, 44–58 (2015)

    Article  CAS  Google Scholar 

  13. W. Cheng, W. Liu, S. Yuan, Mater. Sci. Eng. A 759, 357–367 (2019)

    Article  CAS  Google Scholar 

  14. S. Yuan, W. Cheng, W. Liu, Y. Xu, J. Mater. Process. Tech. 284, 116743 (2020)

    Article  CAS  Google Scholar 

  15. B.R. Schneider, R.G. Grant, B. Heine, R. Borret, S. Burger, Z. Zouaoui, Mater. Design 64, 750–754 (2014)

    Article  CAS  Google Scholar 

  16. R. Zhang, Z. Shao, J. Lin, Int. J. Lightweight Mater. Manuf. 1, 115–125 (2018)

    Google Scholar 

  17. H. Rong, P. Hu, L. Ying, W. Hou, J. Zhang, Int. J. Mech. Sci. 156, 59–73 (2019)

    Article  Google Scholar 

  18. H. Gao, O. El Fakir, L. Wang, D.J. Politis, Z. Li, Int. J. Mech. Sci. 131–132, 792–810 (2017)

    Article  Google Scholar 

  19. J.D. Bressan, S. Bruschi, A. Ghiotti, Int. J. Mech. Sci. 115116, 702–710 (2016)

    Article  Google Scholar 

  20. Z. Kuczyński, M. Kazimierz, Int. J. Mech. Sci. 9, 609–620 (1967)

    Article  Google Scholar 

  21. N. Wang, A. Ilinich, M. Chen, G. Luckey, G. D’Amours, Int. J. Mech. Sci. 151, 444–460 (2019)

    Article  Google Scholar 

  22. B. Ma, X. Wu, X. Li, M. Wan, Z. Cai, Mater. Design 94, 9–16 (2016)

    Article  CAS  Google Scholar 

  23. H. Wang, M. Wan, Y. Yan, T. Nonferr. Metal. Soc. 22, 2370–2378 (2012)

    Article  CAS  Google Scholar 

  24. X. Li, N. Song, G. Guo, Z. Sun, Chinese J. Aeronaut. 26, 1317–1323 (2013)

    Article  Google Scholar 

  25. F. Barlat, Mater. Sci. Eng. 91, 55–72 (1987)

    Article  CAS  Google Scholar 

  26. P. Dasappa, K. Inal, R. Mishra, Int. J. Solids Struct. 49, 3528–3550 (2012)

    Article  CAS  Google Scholar 

  27. H.J. Bong, J. Lee, X. Hu, X. Sun, M. Lee, Int. J. Plasticity 126, 102630 (2020)

    Article  CAS  Google Scholar 

  28. P.D. Wu, K.W. Neale, E. Van Der Giessen, Metall. Mater. Trans. A 29, 527–535 (1998)

    Article  Google Scholar 

  29. R. Temam, Arch. Ration. Mech. An. 95(2), 137–183 (1986)

    Article  Google Scholar 

  30. R. Hill, Proc. R. Soc. Lond. A 193, 281–297 (1948)

    Article  CAS  Google Scholar 

  31. F. Barlat, K. Lian, Int. J. Plasticity 5, 51–66 (1989)

    Article  Google Scholar 

  32. R.W. Logan, W.F. Hosford, Int. J. Mech. Sci. 22, 419–430 (1980)

    Article  Google Scholar 

  33. M. Gotoh, Int. J. Mech. Sci. 19(9), 513–520 (1977)

    Article  Google Scholar 

  34. F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.H. Choi, E. Chu, Int. J. Plasticity 19, 1297–1319 (2003)

    Article  CAS  Google Scholar 

  35. J.D. Bressan, M. Liewald, K. Drotleff, Procedia Manuf. 47, 1293–1299 (2020)

    Article  Google Scholar 

  36. J. Ding, C. Zhang, X. Chu, G. Zhao, L. Leotoing, D. Guines, Int. J. Mech. Sci. 98, 59–69 (2015)

    Article  Google Scholar 

  37. X. Li, H. Dong, H. Wang, G. Guo, D. Li, T. Nonferr. Metal. Soc. 30, 405–416 (2020)

    Article  CAS  Google Scholar 

  38. M. Nurcheshmeh, M. Nurcheshmeh, D.E. Green, D.E. Green, Int. J. Mater. Form. 4, 25–37 (2011)

    Article  Google Scholar 

  39. F. Stachowicz, T. Jpn. I. Met. 29, 484–493 (1988)

    Article  CAS  Google Scholar 

  40. Z. Xu, H.J. Roven, Z. Jia, Mater. Sci. Eng. A 648, 350–358 (2015)

    Article  CAS  Google Scholar 

  41. E. Simonetto, R. Bertolini, A. Ghiotti, S. Bruschi, Int. J. Mech. Sci. 187, 105919 (2020)

    Article  Google Scholar 

  42. Z. Xu, H.J. Roven, Z. Jia, Mater. Sci. Eng. A 679, 379–390 (2017)

    Article  CAS  Google Scholar 

  43. H. He, Y. Yi, J. Cui, S. Huang, Vacuum 160, 293–302 (2019)

    Article  CAS  Google Scholar 

  44. S. Krymskiy, O. Sitdikov, E. Avtolratova, M. Markushev, T. Nonferr. Metal. Soc. 30, 14–26 (2020)

    Article  CAS  Google Scholar 

  45. M. Kuroda, V. Tvergaard, Int. J. Solids Struct. 37, 5037–5059 (2000)

    Article  Google Scholar 

  46. A. Rezaee-Bazzaz, H. Noori, R. Mahmudi, Int. J. Mech. Sci. 53, 262–270 (2011)

    Article  Google Scholar 

  47. J. Min, J. Lin, J. Li, W. Bao, Comput. Mater. Sci. 49, 326–332 (2010)

    Article  CAS  Google Scholar 

  48. M. Kumar, N. Sotirov, F. Grabnerr, R. Schneider, G. Mozdzen, T. Nonferr. Metal. Soc. 27, 1257–1263 (2017)

    Article  CAS  Google Scholar 

  49. W. Cheng, W. Liu, X. Fan, S. Yuan, Mater. Sci. Eng. A 790, 139707 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2019YFA0708802), the Natural Science Foundation of Hunan Province (Grant No. 2020JJ4709), the State Key Laboratory of High Performance Complex Manufacturing (Grant No. zzyjkt2018-03). We would like to thank Editage [www.edita.ge.cn] for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youping Yi or Hailin He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Yi, Y., Huang, S. et al. Experimental and Theoretical Investigation on the Forming Limit of 2024-O Aluminum Alloy Sheet at Cryogenic Temperatures. Met. Mater. Int. 27, 5199–5211 (2021). https://doi.org/10.1007/s12540-020-00922-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00922-3

Keywords

Navigation