Skip to main content
Log in

Characterization of Tensile Properties, Limiting Strains, and Deep Drawing Behavior of AA5754-H22 Sheet at Elevated Temperature

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Automotive industries are very much interested in characterization of formability improvement of aluminum alloys at elevated temperatures before designing tools, heating systems, and processing sequences for fabrication of auto-body panels by warm forming technology. In this study, tensile tests of AA5754-H22 aluminum alloy were carried out at five different temperatures and three different strain rates to investigate the deformation behavior correlating with Cowper-Symonds constitutive equation. Laboratory scale warm forming facilities were designed and fabricated to perform limiting dome height and deep drawing tests to evaluate forming limit strains and drawability of sheet metal at different tool temperatures. The forming limit strain and dome height improved significantly when both the die and punch were heated to 200 °C. Remarkable improvement in deep drawn cup depth was observed when die and punch temperatures were maintained at 200 and 30 °C, respectively, producing a non-isothermal temperature gradient of approximately 93 °C across the blank from flange to center. The forming behavior at different isothermal and non-isothermal conditions were predicted successfully using a thermo-mechanical FE model incorporating temperature-dependent properties in Barlat-89 yield criterion coupled with Cowper-Symonds hardening model, and the thinning/failure location in deformed cups were validated implementing the experimental limiting strains as damage model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. S. Toros, F. Ozturk, and I. Kacar, Review of Warm Forming of Aluminum-Magnesium Alloys, J. Mater. Process. Technol., 2008, 207, p 1-12

    Article  Google Scholar 

  2. V. Psyk, D. Risch, B.L. Kinsey, A.E. Tekkaya, and M. Kleiner, Electromagnetic Forming—A Review, J. Mater. Process. Technol., 2011, 211, p 787-829

    Article  Google Scholar 

  3. S.H. Zhang, Z.R. Wang, Y. Xu, Z.T. Wang, and L.X. Zhou, Recent Developments in Sheet Hydroforming Technology, J. Mater. Process. Technol., 2004, 151, p 237-241

    Article  Google Scholar 

  4. D.V. Wilson, Aluminium Versus Steel in the Family Car—The Formability Factor, J. Mech. Work. Technol., 1988, 16, p 257-277

    Article  Google Scholar 

  5. S. Mahabunphachai, M. Koc, and J.E. Carsley, Investigations on Deformation Behavior of AA5754 Sheet Alloy Under Warm Hydroforming Conditions, J. Manuf. Sci. Eng., 2011, 133, p 051007

    Article  Google Scholar 

  6. J. Jeswiet, M. Geiger, U. Engel, M. Kleiner, M. Schikorra, J. Duflou, R. Neugebauer, P. Bariani, and S. Bruschi, Metal Forming Progress Since 2000, CIRP J. Manuf. Sci. Technol., 2008, 1(2008), p 2-17

    Article  Google Scholar 

  7. R.C. Picu, G. Vincze, F. Ozturk, J.J. Gracio, F. Barlat, and A.M. Maniatty, Strain Rate Sensitivity of the Commercial Aluminum Alloy AA5182-O, Mater. Sci. Eng. A, 2005, 390, p 334-343

    Article  Google Scholar 

  8. P.J. Bolt, R.J. Werkhoven, A.H. Van Den Boogaard, Warm Deep Drawing of Aluminium Sheet, 2003, p 2-9.

  9. F. Ozturk, S. Toros, and H. Pekel, Evaluation of Tensile Behaviour of 5754 Aluminium-Magnesium Alloy at Cold and Warm Temperatures, Mater. Sci. Technol., 2009, 25, p 919-924

    Article  Google Scholar 

  10. D. Li and A. Ghosh, Tensile Deformation Behavior of Aluminum Alloys at Warm Forming Temperatures, Mater. Sci. Eng. A, 2003, 352, p 279-286

    Article  Google Scholar 

  11. M. Jain, J. Allin, and M.J. Bull, Deep Drawing Characteristics of Automotive Aluminum Alloys, Mater. Sci. Eng. A, 1998, 256, p 69-82

    Article  Google Scholar 

  12. S. Yoshihara, K.I. Manabe, and H. Nishimura, Effect of Blank Holder Force Control in Deep-Drawing Process of Magnesium Alloy Sheet, J. Mater. Process. Technol., 2005, 170, p 579-585

    Article  Google Scholar 

  13. G. Palumbo and L. Tricarico, Numerical and Experimental Investigations on the Warm Deep Drawing Process of Circular Aluminum Alloy Specimens, J. Mater. Process. Technol., 2007, 184, p 115-123

    Article  Google Scholar 

  14. H.S. Kim, M. Koç, J. Ni, and A. Ghosh, Finite Element Modeling and Analysis of Warm Forming of Aluminum Alloys—Validation Through Comparisons with Experiments and Determination of a Failure Criterion, J. Manuf. Sci. Eng., 2006, 128, p 613

    Article  Google Scholar 

  15. D.E. Green, K.W. Neale, S.R. MacEwen, A. Makinde, and R. Perrin, Experimental Investigation of the Biaxial Behaviour of an Aluminum Sheet, Int. J. Plast., 2004, 20, p 1677-1706

    Article  Google Scholar 

  16. D. Li and A.K. Ghosh, Biaxial Warm Forming Behavior of Aluminum Sheet Alloys, J. Mater. Process. Technol., 2004, 145, p 281-293

    Article  Google Scholar 

  17. T. Naka, G. Torikai, R. Hino, and F. Yoshida, The Effects of Temperature and Forming Speed on The Forming Limit Diagram for Type 5083 Aluminum-Magnesium Alloy Sheet, J. Mater. Process. Technol., 2001, 113, p 648-653

    Article  Google Scholar 

  18. F. Barlat and K. Lian, Plastic Behavior and Stretchability of Sheet Metals. Part I: A Yield Function for Orthotropic Sheets Under Plane Stress Conditions, Int. J. Plast., 1989, 5, p 51-66

    Article  Google Scholar 

  19. J.W. Yoon, F. Barlat, R.E. Dick, K. Chung, and T.J. Kang, Plane Stress Yield Function for Aluminum Alloy Sheets. Part II: FE Formulation and Its Implementation, Int. J. Plast., 2004, 20, p 495-522

    Article  Google Scholar 

  20. M. Zampaloni, N. Abedrabbo, and F. Pourboghrat, Experimental and Numerical Study of Stamp Hydroforming of Sheet Metals, Int. J. Mech. Sci., 2003, 45, p 1815-1848

    Article  Google Scholar 

  21. T. Naka, Y. Nakayama, T. Uemori, R. Hino, and F. Yoshida, Effects of Temperature on Yield Locus for 5083 Aluminum Alloy Sheet, J. Mater. Process. Technol., 2003, 140, p 494-499

    Article  Google Scholar 

  22. D.G. Tari and M.J. Worswick, Elevated Temperature Constitutive Behavior and Simulation of Warm Forming of AZ31B, J. Mater. Process. Technol., 2015, 221, p 40-55

    Article  Google Scholar 

  23. ASTM, E8/E8M Standard Test Methods for Tension Testing of Metallic Materials, Annu. B. ASTM Stand., 2010, 4(2010), p 1-27

    Google Scholar 

  24. S.K. Panda, D.R. Kumar, H. Kumar, and A.K. Nath, Characterization of Tensile Properties of Tailor Welded IF Steel Sheets and Their Formability in Stretch Forming, J. Mater. Process. Technol., 2007, 183, p 321-332

    Article  Google Scholar 

  25. Livermore Software Technology Corporation, LS-DYNA Keyword User’s Manual, Version 971, California (2007).

  26. R. Courant, Variational Methods for the Solution of Problems of Equilibrium and Vibrations, Bull. Am. Math. Soc., 1943, 49, p 1-23

    Article  Google Scholar 

  27. T. Belytschko, J.I. Lin, and T. Chen-Shyh, Explicit Algorithms for the Nonlinear Dynamics of Shells, Comput. Methods Appl. Mech. Eng., 1984, 42, p 225-251

    Article  Google Scholar 

  28. H. Karbasian and A.E. Tekkaya, A Review on Hot Stamping, J. Mater. Process. Technol., 2010, 210, p 2103-2118

    Article  Google Scholar 

  29. R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. R. Soc. London A Math. Phys. Eng. Sci., 1948, 193, p 281-297

    Article  Google Scholar 

  30. J. Winklhofer, G. Trattnig, C. Lind, C. Sommitsch, H. Feuerhuber, F. Barlat, Y.H. Moon, M.G. Lee, Process Simulation of Aluminium Sheet Metal Deep Drawing at Elevated Temperatures, 2010, p 927-934.

  31. N. Abedrabbo, F. Pourboghrat, and J. Carsley, Forming of Aluminum Alloys at Elevated Temperatures - Part 2: Numerical Modeling and Experimental Verification, Int. J. Plast., 2006, 22, p 342-373

    Article  Google Scholar 

  32. P.L. Charpentier, Influence of Punch Curvature on the Stretching Limits of Sheet Steel, Metall. Trans. A, 1975, 6, p 1665-1669

    Article  Google Scholar 

  33. V. Hasek, Research and Theoretical Description Concerning the Influence on the FLDs, Blech Rohre Profile, 1978, 25, p 213-220

    Google Scholar 

Download references

Acknowledgment

Authors are thankful to Mr. Chandan Mondal, Metal Forming Laboratory, Department of Mechanical Engineering, IIT Kharagpur for his help while conducting sheet metal forming experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushanta Kumar Panda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panicker, S.S., Singh, H.G., Panda, S.K. et al. Characterization of Tensile Properties, Limiting Strains, and Deep Drawing Behavior of AA5754-H22 Sheet at Elevated Temperature. J. of Materi Eng and Perform 24, 4267–4282 (2015). https://doi.org/10.1007/s11665-015-1740-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1740-6

Keywords

Navigation