Skip to main content
Log in

Metal Temperature Estimation and Microstructure Evaluation of Long-Term Service-Exposed Super304H Steel Boiler Tubes

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The reliability of service-life assessments for the boiler tubes in thermal power plants depends on the prediction of metal temperatures and the evaluation of microstructure changes. Three tubes—one as-received tube and two tubes service-exposed for 54,750 h and 68,550 h—were used to study metal temperature and microstructure characteristics. First, the average metal temperature was estimated (based on accelerated creep rupture test data for the tubes) using the Larson–Miller parameter. The average metal temperature of the tube experienced during its operational period was estimated to be 616 °C, which is 16 °C higher than the steam temperature of 600 °C. Next, the microstructure characteristics were investigated to evaluate precipitation behavior and creep damage. The results demonstrated that the prominent precipitates in the as-received tube sample included coarse primary Nb(C,N) precipitates at the grain boundaries and fine primary Nb(C,N) precipitates (maximum 200 nm) occasionally observed at dislocations. After long-term service, the size and shape of the Nb(C,N) precipitates were relatively stable. In contrast, string M23C6 precipitates and Cu-rich phase particles were identified at the grain boundaries and within the austenitic matrix, respectively. Increasing the aging time from 54,750 to 68,550 h caused strings of M23C6 precipitates to increase rapidly from 60 to 200 nm and the Cu-rich phase particles to increase from 12 to 32 nm. Finally, creep cavities were observed in both service-exposed tubes. However, creep damage characterized by creep cavities that link and grow into microcracks was observed only in the tube sample service-exposed for 68,550 h.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.D. Kapayeva, M.J. Bergander, A. Vakhguelt, S.I. Khairaliyev, J. VibroEng. 19, 5892 (2017)

    Article  Google Scholar 

  2. T.G. Le, K.B. Yoon, T.M. Jeong, J. Mech. Sci. Technol. 33, 5243 (2019)

    Article  Google Scholar 

  3. K. Kubushiro, Proceedings of the ASME 2018 Symposium on Evevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries (ETAM 20186734), Seattle, WA, USA (2018)

  4. N. Modliński, K. Szczepanek, D. Nabagło, P. Madejski, Z. Modliński, Appl. Therm. Eng. 146, 854 (2019)

    Article  Google Scholar 

  5. A. Sergaki, K. Kalaitzakis, Reliab. Eng. Syst. Safe. 77, 19 (2002)

    Article  Google Scholar 

  6. T.M. Jeong, Master’s Thesis, p.8‒38, Chung-Ang University, Seoul (2018)

  7. X. Wang, Y. Li, D.X. Chen, J.H. Sun, Mater. Sci. Eng., A 754, 238 (2019)

    Article  CAS  Google Scholar 

  8. J.W. Bai, P.P. Liu, Y.M. Zhu, X.M. Li, C.Y. Chi, H.Y. Yu, X.S. Xie, Q. Zhan, Mater. Sci. Eng., A 584, 57 (2013)

    Article  CAS  Google Scholar 

  9. S.P. Tan, Z.H. Wang, S.C. Cheng, Z.D. Liu, J.C. Han, W.T. Fu, Mater. Sci. Eng., A 517, 312 (2009)

    Article  Google Scholar 

  10. M.K. Dash, T. Karthikeyan, R. Mythili, V.D. Vijayanand, S. Saroja, Metall. Mater. Trans. A 48A, 4883 (2017)

    Article  Google Scholar 

  11. X.Y. San, B. Zhang, B. Wu, X.X. Wei, E.E. Oguzie, X.L. Ma, Corros. Sci. 130, 143 (2017)

    Article  Google Scholar 

  12. N.C.Z. Htun, T.T. Nguyen, D. Won, M.H. Nguyen, K.B. Yoon, Mater. High Temp. 34, 33 (2017)

    Article  CAS  Google Scholar 

  13. J.H. Baek, S.H. Kim, C.B. Lee, D.H. Hahn, Met. Mater. Int. 15, 565 (2009)

    Article  CAS  Google Scholar 

  14. V.T. Ha, W.S. Jung, Met. Mater. Int. 17, 713 (2011)

    Article  CAS  Google Scholar 

  15. J.Z. Wang, Z.D. Liu, H.S. Bao, S.C. Cheng, J. Iron. Steel Res. Int. 20, 113 (2013)

    Article  Google Scholar 

  16. H. Tanaka, M. Murata, F. Abe, H. Irie, Mater. Sci. Eng., A 319, 788 (2001)

    Article  Google Scholar 

  17. A. Iseda, H. Okada, H. Semba, M. Igarashi, Energy Mater. 2, 199 (2007)

    Article  CAS  Google Scholar 

  18. D.B. Park, S.M. Hong, K.H. Lee, M.Y. Huh, J.Y. Suh, S.C. Lee, W.S. Jung, Mater. Charact. 93, 52 (2014)

    Article  CAS  Google Scholar 

  19. C.Y. Chi, H.Y. Yu, J.X. Dong, W.Q. Liu, S.S. Cheng, Z.D. Liu, X.S. Xie, Prog. Nat. Sci. 22, 175 (2012)

    Article  Google Scholar 

  20. ASTM-E112–13, Standard Test Method for Determining Average Grain Size, Annual Book of ASTM Standards, Vol. 3.01 (American Society for Testing and Materials, West Conshohocken, 2017)

  21. P.K. Rai, S. Shekhar, K. Mondal, Corros. Sci. 138, 85 (2018)

    Article  CAS  Google Scholar 

  22. I. Sen, E. Amankwaha, N.S. Kumara, E. Fleuryc, K.O. Ishid, K. Honod, U. Ramamurty, Mater. Sci. Eng., A 528, 4491 (2011)

    Article  Google Scholar 

  23. H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, P.R. Calvillo, Mater. Sci. Eng., A 538, 236 (2012)

    Article  CAS  Google Scholar 

  24. I.G. Urrutia, D. Raabe, Acta Mater. 59, 6449 (2011)

    Article  Google Scholar 

  25. Z. Zhang, Z. Hu, H. Tu, S. Schmauder, G. Wu, Mater. Sci. Eng., A 681, 74 (2017)

    Article  CAS  Google Scholar 

  26. X. Bai, J. Pan, G. Chen, J. Liu, J. Wang, T. Zhang, W. Tang, Mater. Sci. Technol. 30, 205 (2014)

    Article  CAS  Google Scholar 

  27. R. Wang, Z. Zheng, Q. Zhou, Y. Gao, Corros. Sci. 111, 728 (2016)

    Article  CAS  Google Scholar 

  28. W.D. Callister, D.G. Rethwisch, Materials Science and Engineering: An Introduction, 10th edn. (Wiley, New York, 2018), pp. 193–194

    Google Scholar 

  29. R. Manojkumar, S. Mahadevan, C.K. Mukhopadhyay, M.N. Singh, Metall. Mater. Trans. A 50A, 5476 (2019)

    Article  Google Scholar 

  30. C. Kim, I. Park, J. Nucl. Sci. Technol. 45, 1036 (2008)

    Article  CAS  Google Scholar 

  31. A. Baltušnikas, A. Grybėnas, R. Kriūkienė, I. Lukošiūtė, V. Makarevičius, J. Mater. Eng. Perform. 28, 1480 (2019)

    Article  Google Scholar 

  32. X. Huang, Q. Zhou, W. Wang, W.S. Li, Y. Gao, Mater. High Temp. 35, 438 (2017)

    Article  Google Scholar 

  33. F.B. Beckitt, B.R. Clark, Acta Metall. 15, 113 (1967)

    Article  CAS  Google Scholar 

  34. G.K. Ahiale, D.H. Kim, W.J. Yang, J.H. Lee, Y.J. Oh, Met. Mater. Int. 24, 738 (2018)

    Article  CAS  Google Scholar 

  35. E.A. Trillo, L.E. Murr, J. Mater. Sci. 33, 1263 (1998)

    Article  CAS  Google Scholar 

  36. L.Z. He, Q. Zheng, X.F. Sun, G.C. Hou, H.R. Guan, Z.Q. Hu, J. Mater. Sci. 40, 2959 (2005)

    Article  CAS  Google Scholar 

  37. S.P. Tan, Z.H. Wang, S.C. Cheng, Z.D. Liu, J.C. Han, W.T. Fu, J. Iron. Steel Res. Int. 17, 63 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) with a Grant (No. 2016 1110100090) funded by the Ministry of Trade, Industry, and Energy (MOTIE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Wha Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T.G., Yoon, K.B. & Ma, Y.W. Metal Temperature Estimation and Microstructure Evaluation of Long-Term Service-Exposed Super304H Steel Boiler Tubes. Met. Mater. Int. 27, 5121–5132 (2021). https://doi.org/10.1007/s12540-020-00808-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00808-4

Keywords

Navigation