Skip to main content
Log in

Friction Stir Welding of Thick AA2519 Alloy: Defect Elimination, Mechanical and Micro-Structural Characterization

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Friction stir welding (FSW) of thick aluminium sections will pave way for remarkable new defence applications, provided the accompanying challenges are successfully addressed. These challenges include elimination of tunnel defects, loss of strength in heat-treatable aluminium alloys, tool design and excessive process forces. Accounts of defect elimination, detailed micro-structural and mechanical characterization for thick section FSW are scarce in the published literature. Further, special strategies such as bobbin tool, pre-drilled hole for plunging and inverted double pass are generally deployed to overcome these challenges. This makes the process less productive and complex. In the present work, armor grade aluminum alloy AA2519-T87 plates having a thickness of 15.4 mm have been successfully joined with a joint efficiency of greater than 75% without supplementary strategies. The disparity in the effects of tool rotational speed and welding speed in the formation of a sound weld has been addressed in detail to enhance the understanding of FSW of thick sections. Micro-hardness measurements have been carried out throughout the transverse cross-section of the welds and correlated with different zones and their corresponding microstructures. Scanning electron microscopy and X-ray energy dispersive spectroscopy have been used to characterize the coarse phase particles present in the weld zones.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. X. Lei, Y. Deng, Z. Yin, G. Xu, Tungsten inert gas and friction stir welding characteristics of 4-mm-thick 2219-T87 plates at room temperature and −196°C. J Mater Eng Perform 23(6), 2149–2158 (2014)

    Article  CAS  Google Scholar 

  2. D. Edwards, I. Crouch, Light alloys, in The Science of Armour Materials, ed. by I. Crouch (Elsevier, Amsterdam, 2017), pp. 117–166

    Chapter  Google Scholar 

  3. T. Børvik, L. Olovsson, S. Dey, M. Langseth, Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates. Int. J. Impact Eng. 38(7), 577–589 (2011)

    Article  Google Scholar 

  4. L. Quintino, R. Miranda, U. Dilthey, D. Iordachescu, M. Banasik, S. Stano, Laser welding of structural aluminium, in Structural Connections for Lightweight Metallic Structures, ed. by P. Moreira, L. da Silva, P. de Castro (Springer, Berlin, 2010), pp. 33–57

    Chapter  Google Scholar 

  5. M.A. Sutton, B. Yang, A.P. Reynolds, J. Yan, Banded microstructure in 2024-T351 and 2524-T351 aluminum friction stir welds: part II. Mechanical characterization. Mater. Sci. Eng. A 364(1–2), 66–74 (2004)

    Article  Google Scholar 

  6. M.A. Sutton, B. Yang, A.P. Reynolds, R. Taylor, Microstructural studies of friction stir welds in 2024-T3 aluminum. Mater. Sci. Eng. A 323(1–2), 160–166 (2002)

    Article  Google Scholar 

  7. G. Oertelt, S. Babu, S. David, E. Kenik, Effect of thermal cycling on friction stir welds of 2195 aluminum alloy. Weld. J. 80(3), 71–79 (2001)

    Google Scholar 

  8. H.-J. Liu, H-j Zhang, Y-x Huang, Y. Lei, Mechanical properties of underwater friction stir welded 2219 aluminum alloy. Trans. Nonferrous Met. Soc. China 20(8), 1387–1391 (2010)

    Article  CAS  Google Scholar 

  9. Y. Chen, H. Liu, J. Feng, Friction stir welding characteristics of different heat-treated-state 2219 aluminum alloy plates. Mater. Sci. Eng. A 420(1–2), 21–25 (2006)

    Article  Google Scholar 

  10. G. Cao, S. Kou, Friction stir welding of 2219 aluminum: behavior of (Al2Cu) particles. Weld. J. 84(1), 1–8 (2005)

    Google Scholar 

  11. K.S. Arora, S. Pandey, M. Schaper, R. Kumar, Effect of process parameters on friction stir welding of aluminum alloy 2219-T87. Int. J. Adv. Manuf. Technol. 50(9–12), 941–952 (2010)

    Article  Google Scholar 

  12. S. Benavides, Y. Li, L. Murr, D. Brown, J. McClure, Low-temperature friction-stir welding of 2024 aluminum. Scr. Mater. 41(8), 809-815 (1999)

    Article  CAS  Google Scholar 

  13. S.S. Sabari, S. Malarvizhi, V. Balasubramanian, The effect of pin profiles on the microstructure and mechanical properties of underwater friction stir welded AA2519-T87 aluminium alloy. Int. J. Mech. Mater. Eng. 11(1), 5 (2016)

    Article  Google Scholar 

  14. S.S. Sabari, S. Malarvizhi, V. Balasubramanian, G.M. Reddy, Experimental and numerical investigation on under-water friction stir welding of armour grade AA2519-T87 aluminium alloy. Defence Technol. 12(4), 324–333 (2016)

    Article  Google Scholar 

  15. S.S. Sabari, S. Malarvizhi, V. Balasubramanian, Influences of tool traverse speed on tensile properties of air cooled and water cooled friction stir welded AA2519-T87 aluminium alloy joints. J. Mater. Process. Technol. 237, 286–300 (2016)

    Article  CAS  Google Scholar 

  16. T.S. Rao, G.M. Reddy, S.K. Rao, Microstructure and mechanical properties of friction stir welded AA7075–T651 aluminum alloy thick plates. Trans. Nonferrous Met. Soc. China 25(6), 1770–1778 (2015)

    Article  CAS  Google Scholar 

  17. W. Xu, J. Liu, G. Luan, C. Dong, Temperature evolution, microstructure and mechanical properties of friction stir welded thick 2219-O aluminum alloy joints. Mater. Des. 30(6), 1886–1893 (2009)

    Article  CAS  Google Scholar 

  18. N. Martinez, N. Kumar, R. Mishra, K. Doherty, Microstructural variation due to heat gradient of a thick friction stir welded aluminum 7449 alloy. J. Alloys Compd. 713, 51–63 (2017)

    Article  CAS  Google Scholar 

  19. A. Arora, M. Mehta, A. De, T. DebRoy, Load bearing capacity of tool pin during friction stir welding. Int. J. Adv. Manuf. Technol. 61(9–12), 911–920 (2012)

    Article  Google Scholar 

  20. H. Su, C. Wu, Determination of the traverse force in friction stir welding with different tool pin profiles. Sci. Technol. Weld. Join. 24, 209–217 (2018)

    Article  Google Scholar 

  21. A. Arora, A. De, T. DebRoy, Toward optimum friction stir welding tool shoulder diameter. Scr. Mater. 64(1), 9–12 (2011)

    Article  CAS  Google Scholar 

  22. N.Z. Khan, A.N. Siddiquee, Z.A. Khan, S.K. Shihab, Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys. J. Alloys Compd. 648, 360–367 (2015)

    Article  CAS  Google Scholar 

  23. Siddiquee AN, Khan NZ, Khan ZA. Universal friction stir welding/processing work fixture. Indian Patent Application No.201611017741 A, INDIA, Publication Date: 09/09/2016

  24. Siddiquee AN, Khan NZ, Khan ZA. Universal friction stir welding/processing tool adopter. Indian Patent Application No. 201911002618 A (19) INDIA (22) Publication Date : 22/02/2019

  25. C.T. Canaday, M.A. Moore, W. Tang, A.P. Reynolds, Through thickness property variations in a thick plate AA7050 friction stir welded joint. Mater. Sci. Eng. A 559, 678–682 (2013)

    Article  CAS  Google Scholar 

  26. P. Colegrove, H. Shercliff, CFD modelling of friction stir welding of thick plate 7449 aluminium alloy. Sci. Technol. Weld. Join. 11(4), 429–441 (2006)

    Article  CAS  Google Scholar 

  27. P. Colegrove, H. Shercliff, Experimental and numerical analysis of aluminium alloy 7075-T7351 friction stir welds. Sci. Technol. Weld. Join. 8(5), 360–368 (2003)

    Article  CAS  Google Scholar 

  28. Y. Zhu, G. Chen, Q. Chen, G. Zhang, Q. Shi, Simulation of material plastic flow driven by non-uniform friction force during friction stir welding and related defect prediction. Mater. Des. 108, 400–410 (2016)

    Article  Google Scholar 

  29. A.C. Nunes, Jr. Metal flow in friction stir welding. NASA Technical Reports Server. Document ID: 20070001990. Materials Science and Technology 2006/ASM International, The Minerals, Metals and Materials Society; October 15, 2006 - October 19, 2006; Cincinnati, OH; United States (2006)

  30. Z. Chen, S. Cui, Tool-workpiece interaction and shear layer flow during friction stir welding of aluminium alloys. Trans. Nonferrous Met. Soc. China 17(s1A), s258–s261 (2007)

    Google Scholar 

  31. M. Rosales, N. Alcantara, J. Santos, R. Zettler, The backing bar role in heat transfer on aluminium alloys friction stir welding. Mater. Sci. Forum 636, 459–464 (2010)

    Article  Google Scholar 

  32. P. Su, A. Gerlich, T. North, G. Bendzsak, Material flow during friction stir spot welding. Sci. Technol. Weld. Join. 11(1), 61–71 (2006)

    Article  CAS  Google Scholar 

  33. P. Su, A. Gerlich, T. North, G. Bendzsak, Intermixing in dissimilar friction stir spot welds. Metall. Mater. Trans. A 38(3), 584–595 (2007)

    Article  Google Scholar 

  34. J. Schneider, A.C. Nunes, Jr. Influence of processing parameters on the flow path in friction stir welding. NASA Technical Reports Server. Document ID: 20060026036. NASA Marshall Space Flight Center; Huntsville, AL, United States (2006)

  35. J.-Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Mater. 51(3), 713–729 (2003)

    Article  CAS  Google Scholar 

  36. M. Mahoney, C. Rhodes, J. Flintoff, W. Bingel, R. Spurling, Properties of friction-stir-welded 7075 T651 aluminum. Metall. Mater. Trans. A 29(7), 1955–1964 (1998)

    Article  Google Scholar 

  37. R.S. Mishra, P.S. De, N. Kumar, Friction Stir Welding and Processing: Science and Engineering (Springer, Berlin, 2014)

    Book  Google Scholar 

  38. R. Nandan, G. Roy, T. Debroy, Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metall. Mater. Trans. A 37(4), 1247–1259 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (AKM) is grateful to the financial support of Defence Research and Development Organization (DRDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhruv Bajaj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ubaid, M., Bajaj, D., Mukhopadhyay, A.K. et al. Friction Stir Welding of Thick AA2519 Alloy: Defect Elimination, Mechanical and Micro-Structural Characterization. Met. Mater. Int. 26, 1841–1860 (2020). https://doi.org/10.1007/s12540-019-00472-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00472-3

Keywords

Navigation