Skip to main content
Log in

Evaluation of Microstructure, Hardness and Mechanical Properties of Friction Stir Welded Al–Ce–Si–Mg Aluminium Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A vast majority of the research on friction stir welding(FSW) is mainly focused on welding of aluminium alloys. The research studies in this paper are based on one such alloy known as Al–Ce–Si–Mg aluminium alloy, of which, the microstructure and other mechanical properties of the friction stir welded joints are yet to be studied. The plates of Al–Ce–Si–Mg aluminium alloy were friction stir welded using a non consumable, rotating tool with triangular profile pin and circular shoulder, with different combinations of tool rotation speeds and weld speeds. The microstructure, hardness and mechanical properties of the weld were analyzed. The microstructure of the weld zones revealed that, the average grain size at the bottom of the Nugget Zone (NZ) is 5 ± 0.12 μm and gradually increases to 15 ± 0.23 μm at the top of the NZ. In the TMAZ the grain size is 20 ± 0.14 μm and is bigger compared to the NZ. In the HAZ, the grain size is around 37 ± 0.21 μm and is bigger than that in the TMAZ. The maximum Vickers hardness value at the NZ center is 231.9 ± 2 Hv, and uniformly reduces to 100 ± 2.4 Hv in the TMAZ and 65 ± 1.3 Hv in the HAZ and then increases to 98 ± 1 Hv in the base material (BM). The maximum ultimate tensile strength (UTS) of FSW joint was found to be around 102.55 ± 3 MPa with elongation at fracture of 2.5%. The BM UTS was 154 ± 4.5 MPa. For a tool rotation speed of 800RPM and a weld speed of 20 mm/min a maximum joint efficiency of 67%. was obtained. Hence these were chosen as the optimum process parameters to join the alloy Al–Ce–Si–Mg by FSW.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z.C. Sims, D. Weiss, S.K. McCall, M.A. McGuire, R.T. Ott, T. Geer, O. Rios, P.A.E. Turchi, JOM 68, 1940–1947 (2016). https://doi.org/10.1007/s11837-016-1943-9

    Article  CAS  Google Scholar 

  2. Z.C. Sims, O. Rios, S.K. McCall, T. Van Buuren, R.T. Ott, Light Met. 2016, 107–114 (2016). https://doi.org/10.1007/978-3-319-48251-4_19

  3. W.O. Soboyejo, T.S. Srivatsan, Advanced Structural Materials: Properties, Design Optimization, and Applications. (CRC press, Boca Raton, 2006), p. 528. https://doi.org/10.1201/9781420017465

  4. K. Elangovan, V. Balasubramanian, Mater. Des. 29, 362–373 (2008). https://doi.org/10.1016/j.matdes.2007.01.030

    Article  CAS  Google Scholar 

  5. H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, K. Nogi, Mater. Sci. Eng., A 429, 50–57 (2006). https://doi.org/10.1016/j.msea.2006.04.118

    Article  CAS  Google Scholar 

  6. S. Jannet, P.K. Mathews, R. Raja, Bull. Polish Acad. Sci. 62, 791–795 (2014). https://doi.org/10.2478/bpasts-2014-0086

    Article  CAS  Google Scholar 

  7. P.L. Threadgill, A.J. Leonard, H.R. Shercliff, P.J. Withers, Int. Mater. Rev. 54(2), 49–93 (2009). https://doi.org/10.1179/174328009x411136

    Article  CAS  Google Scholar 

  8. B.W.M. Thomas, K.I. Johnson, C.S. Wiesner, Adv. Eng. Mater. 5(7), 485–490 (2003). https://doi.org/10.1002/adem.200300355

    Article  Google Scholar 

  9. K. Chiteka, Int. J. Eng. Res. Technol. 2, 8–18 (2013)

    Article  Google Scholar 

  10. A. Meilinger, I. Torok, Prod. Process. Syst. 6(1), 25–34 (2013)

    Google Scholar 

  11. A.D. D’Souza, S.S. Rao, M.A. Herbert, Mater. Res. Express IOP Sci. 10, 086504 (2019). https://doi.org/10.1088/2053-1591/ab1aec

    Article  CAS  Google Scholar 

  12. H. Watanabe, A.Yanagisawa Takayama, J. Mater. Process. Technol. 178(1–3), 342–349 (2006). https://doi.org/10.1016/j.jmatprotec.2006.04.117

    Article  CAS  Google Scholar 

  13. A. Lauro, Weld. Int. 26(1), 8–21 (2012). https://doi.org/10.1080/09507116.2011.581351

    Article  Google Scholar 

  14. H. Uzun, C. Dalle, A. Argagnotto, T. Ghidini, C. Gambaro, Mater. Des. 26, 41–46 (2005). https://doi.org/10.1016/j.matdes.2004.04.002

    Article  CAS  Google Scholar 

  15. R.S. Mishra, M.W. Mahoney, Y. Sato, Y. Hovanski, R. Verma, Friction Stir Welding and Processing VI. (Wiley, London, 2011). https://doi.org/10.1002/9781118062302

    Book  Google Scholar 

  16. N.B.K. Babu, M.J. Davidson, A.N. Rao, K. Balasubramanian, M. Govindaraju, Mater. Des. 55, 35–42 (2014). https://doi.org/10.1016/j.matdes.2013.10.004

    Article  CAS  Google Scholar 

  17. A.R. Raja, M.Z. Khan Yusufzai, M. Vashista, Int. J. Adv. Manuf. Technol. 97, 2051–2059 (2018). https://doi.org/10.1016/j.matdes.2013.10.004

    Article  CAS  Google Scholar 

  18. B.K.B. Nadikudi, M.J. Davidson, N.R. Akasapu, M. Govindaraju, Trans. Nonferrous Met. Soc. China 25, 1787–1793 (2015). https://doi.org/10.1016/s1003-6326(15)63784-0

    Article  CAS  Google Scholar 

  19. J. Defalco, Friction Stir Welding vs. Fusion Welding. Weld. J. 85, 42–44 (2006)

    CAS  Google Scholar 

  20. R.S. Mishra, Z.Y. Ma, Friction stir welding and processing. Mater. Sci. Eng. R Rep. 50, 1–78 (2005). https://doi.org/10.1016/j.mser.2005.07.001

    Article  CAS  Google Scholar 

  21. M. Bahrami, M.K. Besharati Givi, K. Dehghani, N. Parvin, Mater. Des. 53, 519–527 (2014). https://doi.org/10.1016/j.matdes.2013.07.049

    Article  CAS  Google Scholar 

  22. K. Kumar, S.V. Kailas, Mater. Sci. Eng., A 485, 367–374 (2008). https://doi.org/10.1016/j.msea.2007.08.013

    Article  CAS  Google Scholar 

  23. D.G. Hattingh, C. Blignault, T.I. Van Niekerk, M.N. James, J. Mater. Process. Technol. 3, 46–57 (2008). https://doi.org/10.1016/j.jmatprotec.2007.10.028

    Article  CAS  Google Scholar 

  24. K. Krasnowski, C. Hamilton, S. Dymek, Arch. Civ. Mech. Eng. 15, 133–141 (2015). https://doi.org/10.1016/j.acme.2014.02.001

    Article  Google Scholar 

  25. H.M.A. Kumar, V.V. Ramana, Int. J. Eng. Sci. 4, 1–4 (2014)

    Google Scholar 

  26. K. Elangovan, V. Balasubramanian, Mater. Des. 29, 362–373 (2008). https://doi.org/10.1016/j.jmatprotec.2007.09.019

    Article  CAS  Google Scholar 

  27. R. Jain, K. Kumari, R.K. Kesharwani, S. Kumar, S. K. Pal, S.B. Singh, S.K. Panda, A.K. Samantaray, Friction stir welding: Scope and recent development , ed. by J.P. Davim. Modern Manufacturing Engineering, Materials Forming, Machining and Tribology, (Springer, 2015). https://doi.org/10.1007/978-3-319-20152-8_6

  28. Y.N. Zhang, X. Cao, S. Larose, P. Wanjara, Can. Metall. Q. 51(3), 250–261 (2012). https://doi.org/10.1179/1879139512y.0000000015

    Article  CAS  Google Scholar 

  29. R. Rai, A. De, H.K.D.H. Bhadeshia, T. DebRoy, Sci. Technol. Weld. Join. 16(4), 325–342 (2011). https://doi.org/10.1179/1362171811y.0000000023

    Article  CAS  Google Scholar 

  30. R.S. Mishra, P.S. De, N. Kumar, Friction Stir Welding and Processing. (Springer, Cham, 2014), pp 256–296. https://doi.org/10.1007/978-3-319-07043-8

    Book  Google Scholar 

  31. M. Habibnia, M. Shakeri, S. Nourouzi, Adv. Mater. Res. Tech. Publ. 445, 741–746 (2012). https://doi.org/10.4028/scientific5/amr.445.741

    Article  CAS  Google Scholar 

  32. M. Mijajlović, D. Milčic, Analytical model for estimating the amount of heat generated during friction stir welding: application on plates made of aluminium alloy 2024 T351. IntechOpen Publishers, London (2012). https://doi.org/10.5772/53563

  33. A. Kumar, C. Veeresh Nayak, M.A. Herbert, S.S. Rao, Mater. Res. Innov. 18, 1–6 (2014). https://doi.org/10.1179/1432891714z.0000000001016

    Article  Google Scholar 

  34. S. Yu, X. Chen, Z. Huang, Y. Liu, J. Rare Earths 28, 316–320 (2010). https://doi.org/10.1016/s1002-0721(09)60104-6

    Article  CAS  Google Scholar 

  35. Z.C. Sims, O.R. Rios, D. Weiss, P.E.A. Turchi, A. Perron, J.R.I. Lee, T.T. Li, J.A. Hammons, M. Bagge-Hansen, T.M. Willey, K. An, Y. Chen, A.H. King, S.K. McCall, Mater. Horizons 4, 1070–1078 (2017). https://doi.org/10.1039/c7mh00391a

    Article  CAS  Google Scholar 

  36. K. Kumar, S.V. Kailas, Mater. Sci. Eng., A 485, 367–374 (2008). https://doi.org/10.1016/j.msea.2007.08.013

    Article  CAS  Google Scholar 

  37. P.H. Shah, V.J. Badheka, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 233(6), 1191–1226 (2019). https://doi.org/10.1177/1464420716689588

    Article  CAS  Google Scholar 

  38. P. Dong, H. Li, D. Sun, W. Gong, J. Liu, Mater. Des. 45, 524–531 (2013). https://doi.org/10.1016/j.matdes.2012.09.040

    Article  CAS  Google Scholar 

  39. H. Mehdi, R.S. Mishra, J. Achiev. Mater. Manuf. Eng. Microstruct. 77, 31–40 (2016). https://doi.org/10.5604/17348412.1229666

    Article  Google Scholar 

  40. L. Commin, M. Dumont, J.-E. Masse, L. Barrallier, Acta Mater. 57, 326–334 (2009). https://doi.org/10.1016/j.actamat.2008.09.011

    Article  CAS  Google Scholar 

  41. S. Prabhu, A.K. Shettigar, K. Rao, S. Rao, M. Herbert, Mater. Sci. Forum 880, 50–53 (2016). https://doi.org/10.4028/www.scientific.net/msf.880.50

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Central Manufacturing Technology Institute (CMTI), Bangalore, India, National Institute of Technology Karnataka (NITK), Surathkal, India, Manipal Institute of Technology (MIT), Manipal, India and NMAM Institute of Technology, Nitte, India, M/s Lamina Foundries, Nitte, India for providing infrastructure, finance and other facilities during the course of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austine D. D’Souza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Souza, A.D., Rao, S.S. & Herbert, M.A. Evaluation of Microstructure, Hardness and Mechanical Properties of Friction Stir Welded Al–Ce–Si–Mg Aluminium Alloy. Met. Mater. Int. 26, 1394–1403 (2020). https://doi.org/10.1007/s12540-019-00372-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00372-6

Keywords

Navigation