Skip to main content
Log in

Effect of Microstructural Constituents on Fusion Zone Corrosion Properties of GMA Welded AA 5083 with Novel Al–Mg Welding Wires of High Mg Contents

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The corrosion behavior of fusion zones (FZ-1: 5.39 Mg–0.66Mn, FZ-2: 5.49 Mg–0.35Mn, and FZ-3: 5.72 Mg–0.32Mn) of AA5083 alloy welded with high Mg-containing Al–Mg filler wires has been systematically investigated. An extensive microstructural characterization was performed to evaluate the localized corrosion properties of the fusion zones. The potentiodynamic polarization test and salt spray test showed that the corrosion resistance decreases with increasing Mg content, therefore, the corrosion resistance of FZ-3 is lower than that of the FZ-1 and FZ-2. The electron microscopic analysis after intermittent corrosion test revealed that the eutectic β-phase (Al3Mg2) was responsible for the initiation of corrosion. The corrosion behavior of each microstructural constituents was related to the dissolution potentials of the corresponding microstructures; hence, it forms galvanic couple with the Al matrix. Moreover, high Mg content in the filler wire lead to the formation of additional β-phase in the fusion zone. However, intermetallics such as Al6(Fe,Mn) and Mg2Si were significant only during the later stages of corrosion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. M. Liu, P. Schmutz, S. Zanna, A. Seyeux, H. Ardelean, G. Song, A. Atrens, P. Marcus, Corros. Sci. 52, 562 (2010). https://doi.org/10.1016/j.corsci.2009.10.015

    Article  CAS  Google Scholar 

  2. D.S. D'Antuono, β Phase Growth and Precipitation in the 5xxx Series Aluminum Alloy System (2017)

  3. Y. Zhu, D.A. Cullen, S. Kar, M.L. Free, L.F. Allard, Metall. Mater. Trans. A. 43, 4933 (2012). https://doi.org/10.1007/s11661-012-1354-7

    Article  CAS  Google Scholar 

  4. R. Goswami, G. Spanos, P.S. Pao, R.L. Holtz, Sci. Eng. A. 527, 1089 (2010). https://doi.org/10.1016/j.msea.2009.10.007

    Article  CAS  Google Scholar 

  5. J.L. Searles, P.I. Gouma, R.G. Buchheit, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 32, 2859 (2001). https://doi.org/10.1007/s11661-001-1036-3

    Article  Google Scholar 

  6. D. Mizuno, R.G. Kelly, Corrosion 69, 681 (2013). https://doi.org/10.5006/0813

    Article  CAS  Google Scholar 

  7. S. Jain, J.L. Hudson, J.R. Scully, Electrochim. Acta 108, 253 (2013). https://doi.org/10.1016/j.electacta.2013.06.036

    Article  CAS  Google Scholar 

  8. R. Zhang, S.P. Knight, R.L. Holtz, R. Goswami, C.H.J. Davies, N. Birbilis, Corrosion 72, 144 (2016). https://doi.org/10.5006/1787

    Article  CAS  Google Scholar 

  9. R.K. Gupta, R. Zhang, C.H.J. Davies, N. Birbilis, Corrosion 69, 1081 (2013). https://doi.org/10.5006/0948

    Article  CAS  Google Scholar 

  10. Y.K. Yang, T.R. Allen, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 5226 (2013). https://doi.org/10.1007/s11661-013-1837-1

    Article  CAS  Google Scholar 

  11. K.A. Yasakau, M.L. Zheludkevich, S.V. Lamaka, M.G.S. Ferreira, Electrochim. Acta 52, 7651 (2007). https://doi.org/10.1016/j.electacta.2006.12.072

    Article  CAS  Google Scholar 

  12. F.L. Zeng, Z.L. Wei, J.F. Li, C.X. Li, X. Tan, Z. Zhang, Z.Q. Zheng, Trans. Nonferrous Met. Soc. China 21, 2559 (2011). https://doi.org/10.1016/S1003-6326(11)61092-3

    Article  CAS  Google Scholar 

  13. A. Block-Bolten, T.W. Eagar, Metall. Trans. B. 15, 461 (1984). https://doi.org/10.1007/BF02657376

    Article  Google Scholar 

  14. J.-B. Wang, H. Nishimura, S. Katayma, M. Mizutani, Sci. Technol. Weld. Joi. 16, 418 (2011). https://doi.org/10.1179/1362171810Y.0000000030

    Article  CAS  Google Scholar 

  15. ASM Handbook, Volume 2: Properties and Selection: Nonferrous Alloys and Special Purpose Materials (1987)

  16. Occupational Safety and Health Administration (OSHA), Proposed rule occupational exposure to beryllium and beryllium compounds in construction and shipyard sectors, n.d. https://www.osha.gov/beryllium/nprm_sectors/index.html. Accessed 12 Sept 2018

  17. E.L. Huskins, B. Cao, K.T. Ramesh, Mater. Sci. Eng. A 527, 1292 (2010). https://doi.org/10.1016/j.msea.2009.11.056

    Article  CAS  Google Scholar 

  18. S.G. Kim, Y.Y. Ok, S.J. Ho (2011), Oxidation-resistant aluminum alloy and manufacturing method thereof. https://patents.google.com/patent/KR101273582B1/en. Accessed 16 Feb 2019

  19. Ø. Ryen, O. Nijs, E. Sjölander, B. Holmedal, H.E. Ekström, E. Nes, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 37, 1999 (2006). https://doi.org/10.1007/s11661-006-0142-7

    Article  Google Scholar 

  20. ASTM International, ASTM B117-standard practice for operating salt spray test fog apparatus, 2011. https://doi.org/10.1520/B0117-11.2

  21. International Organization for Standardization (ISO), ISO 9227:2012-corrosion tests in artificial atmospheres (Salt spray tests), 2012. https://doi.org/10.1007/s11367-011-0297-3

  22. ASTM International, Standard practice for preparing, cleaning and evaluating corrosion test, 1999. https://doi.org/10.1520/G0001-03R11.2

  23. ASTM International, Standard reference test method for making potentiodynamic anodic polarization measurements, 2015. https://doi.org/10.1520/G0005-14.2

  24. O. Engler, K. Kuhnke, J. Hasenclever, J. Alloys Compd. 728, 669 (2017). https://doi.org/10.1016/j.jallcom.2017.09.060

    Article  CAS  Google Scholar 

  25. Y. Liu, G. Huang, Y. Sun, L. Zhang, Z. Huang, J. Wang, C. Liu, Materials 9, 88 (2016). https://doi.org/10.3390/ma9020088

    Article  CAS  Google Scholar 

  26. ASTM International, G102-Standard practice for calculation of corrosion rates and related information from electrochemical measurements 1 rosion test specimens ASTM International. G102–89 (2008) 1–7. https://doi.org/10.1520/G0102-89R10.2

  27. H.M. Ezuber, Mater. Corros. 63, 111 (2012). https://doi.org/10.1002/maco.201005667

    Article  CAS  Google Scholar 

  28. H. Ezuber, A. El-Houd, F. El-Shawesh, Mater. Des. 29, 801 (2008). https://doi.org/10.1016/j.matdes.2007.01.021

    Article  CAS  Google Scholar 

  29. R. Goswami, R.L. Holtz, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 1279 (2013). https://doi.org/10.1007/s11661-012-1166-9

    Article  CAS  Google Scholar 

  30. S.W. Nam, D.H. Lee, Met. Mater. 6, 13 (2000). https://doi.org/10.1007/BF03026339

    Article  CAS  Google Scholar 

  31. M.S. Remoe, K. Marthinsen, I. Westermann, K. Pedersen, J. Royset Mater. Sci. Eng. A 693, 60 (2017). https://doi.org/10.1016/j.msea.2017.03.078

    Article  CAS  Google Scholar 

  32. N. Birbilis, R.G. Buchheit, J. Electrochem. Soc. 152, B140 (2005). https://doi.org/10.1149/1.1869984

    Article  CAS  Google Scholar 

  33. L. Tan, T.R. Allen, Corros. Sci. 52, 548 (2010). https://doi.org/10.1016/j.corsci.2009.10.013

    Article  CAS  Google Scholar 

  34. C. Vargel, M. Jacques, M.P. Schmidt, Corros. Alum. (2004). https://doi.org/10.1016/B978-008044495-6/50012-4

    Article  Google Scholar 

  35. F. Eckermann, T. Suter, P.J. Uggowitzer, A. Afseth, P. Schmutz, Electrochim. Acta 54, 844 (2008). https://doi.org/10.1016/j.electacta.2008.05.078

    Article  CAS  Google Scholar 

  36. C. Luo, Role of Microstructure on Corrosion Control of AA2024-T3 Aluminium Alloy (2011)

Download references

Acknowledgements

This work was supported by the Korea Basic Science Institute (KBSI) National Research Facilities and Equipment Center (NFEC) grant funded by the Korea government (Ministry of Education) (No. 2019R1A6C1010045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong Do Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The strength of the fusion zone is associated to the amount of Mg present in it. The Mg provides solid solution strengthening thereby increases the strength. The Table 4 elucidates the strengthening effect of Mg in the fusion zone.

Table 4 The Mg content and tensile strength of fusion zones

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandran, D.C., Murugan, S.P., Kim, YM. et al. Effect of Microstructural Constituents on Fusion Zone Corrosion Properties of GMA Welded AA 5083 with Novel Al–Mg Welding Wires of High Mg Contents. Met. Mater. Int. 26, 1341–1353 (2020). https://doi.org/10.1007/s12540-019-00434-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00434-9

Keywords

Navigation