Effect of Microstructural Constituents on Fusion Zone Corrosion Properties of GMA Welded AA 5083 with Novel Al–Mg Welding Wires of High Mg Contents

  • Dileep Chandran Ramachandran
  • Siva Prasad Murugan
  • Young-Min Kim
  • Dongcheol Kim
  • Gwang-Gook Kim
  • Dae-Geun Nam
  • Chanyoung Jeong
  • Yeong Do ParkEmail author


The corrosion behavior of fusion zones (FZ-1: 5.39 Mg–0.66Mn, FZ-2: 5.49 Mg–0.35Mn, and FZ-3: 5.72 Mg–0.32Mn) of AA5083 alloy welded with high Mg-containing Al–Mg filler wires has been systematically investigated. An extensive microstructural characterization was performed to evaluate the localized corrosion properties of the fusion zones. The potentiodynamic polarization test and salt spray test showed that the corrosion resistance decreases with increasing Mg content, therefore, the corrosion resistance of FZ-3 is lower than that of the FZ-1 and FZ-2. The electron microscopic analysis after intermittent corrosion test revealed that the eutectic β-phase (Al3Mg2) was responsible for the initiation of corrosion. The corrosion behavior of each microstructural constituents was related to the dissolution potentials of the corresponding microstructures; hence, it forms galvanic couple with the Al matrix. Moreover, high Mg content in the filler wire lead to the formation of additional β-phase in the fusion zone. However, intermetallics such as Al6(Fe,Mn) and Mg2Si were significant only during the later stages of corrosion.

Graphical abstract


AA 5083 alloy Fusion zones β-phase Intermetallics Corrosion Dissolution potentials 



This work was supported by the Korea Basic Science Institute (KBSI) National Research Facilities and Equipment Center (NFEC) grant funded by the Korea government (Ministry of Education) (No. 2019R1A6C1010045).


  1. 1.
    M. Liu, P. Schmutz, S. Zanna, A. Seyeux, H. Ardelean, G. Song, A. Atrens, P. Marcus, Corros. Sci. 52, 562 (2010). CrossRefGoogle Scholar
  2. 2.
    D.S. D'Antuono, β Phase Growth and Precipitation in the 5xxx Series Aluminum Alloy System (2017)Google Scholar
  3. 3.
    Y. Zhu, D.A. Cullen, S. Kar, M.L. Free, L.F. Allard, Metall. Mater. Trans. A. 43, 4933 (2012). CrossRefGoogle Scholar
  4. 4.
    R. Goswami, G. Spanos, P.S. Pao, R.L. Holtz, Sci. Eng. A. 527, 1089 (2010). CrossRefGoogle Scholar
  5. 5.
    J.L. Searles, P.I. Gouma, R.G. Buchheit, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 32, 2859 (2001). CrossRefGoogle Scholar
  6. 6.
    D. Mizuno, R.G. Kelly, Corrosion 69, 681 (2013). CrossRefGoogle Scholar
  7. 7.
    S. Jain, J.L. Hudson, J.R. Scully, Electrochim. Acta 108, 253 (2013). CrossRefGoogle Scholar
  8. 8.
    R. Zhang, S.P. Knight, R.L. Holtz, R. Goswami, C.H.J. Davies, N. Birbilis, Corrosion 72, 144 (2016). CrossRefGoogle Scholar
  9. 9.
    R.K. Gupta, R. Zhang, C.H.J. Davies, N. Birbilis, Corrosion 69, 1081 (2013). CrossRefGoogle Scholar
  10. 10.
    Y.K. Yang, T.R. Allen, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 5226 (2013). CrossRefGoogle Scholar
  11. 11.
    K.A. Yasakau, M.L. Zheludkevich, S.V. Lamaka, M.G.S. Ferreira, Electrochim. Acta 52, 7651 (2007). CrossRefGoogle Scholar
  12. 12.
    F.L. Zeng, Z.L. Wei, J.F. Li, C.X. Li, X. Tan, Z. Zhang, Z.Q. Zheng, Trans. Nonferrous Met. Soc. China 21, 2559 (2011). CrossRefGoogle Scholar
  13. 13.
    A. Block-Bolten, T.W. Eagar, Metall. Trans. B. 15, 461 (1984). CrossRefGoogle Scholar
  14. 14.
    J.-B. Wang, H. Nishimura, S. Katayma, M. Mizutani, Sci. Technol. Weld. Joi. 16, 418 (2011). CrossRefGoogle Scholar
  15. 15.
    ASM Handbook, Volume 2: Properties and Selection: Nonferrous Alloys and Special Purpose Materials (1987)Google Scholar
  16. 16.
    Occupational Safety and Health Administration (OSHA), Proposed rule occupational exposure to beryllium and beryllium compounds in construction and shipyard sectors, n.d. Accessed 12 Sept 2018
  17. 17.
    E.L. Huskins, B. Cao, K.T. Ramesh, Mater. Sci. Eng. A 527, 1292 (2010). CrossRefGoogle Scholar
  18. 18.
    S.G. Kim, Y.Y. Ok, S.J. Ho (2011), Oxidation-resistant aluminum alloy and manufacturing method thereof. Accessed 16 Feb 2019
  19. 19.
    Ø. Ryen, O. Nijs, E. Sjölander, B. Holmedal, H.E. Ekström, E. Nes, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 37, 1999 (2006). CrossRefGoogle Scholar
  20. 20.
    ASTM International, ASTM B117-standard practice for operating salt spray test fog apparatus, 2011.
  21. 21.
    International Organization for Standardization (ISO), ISO 9227:2012-corrosion tests in artificial atmospheres (Salt spray tests), 2012.
  22. 22.
    ASTM International, Standard practice for preparing, cleaning and evaluating corrosion test, 1999.
  23. 23.
    ASTM International, Standard reference test method for making potentiodynamic anodic polarization measurements, 2015.
  24. 24.
    O. Engler, K. Kuhnke, J. Hasenclever, J. Alloys Compd. 728, 669 (2017). CrossRefGoogle Scholar
  25. 25.
    Y. Liu, G. Huang, Y. Sun, L. Zhang, Z. Huang, J. Wang, C. Liu, Materials 9, 88 (2016). CrossRefGoogle Scholar
  26. 26.
    ASTM International, G102-Standard practice for calculation of corrosion rates and related information from electrochemical measurements 1 rosion test specimens ASTM International. G102–89 (2008) 1–7.
  27. 27.
    H.M. Ezuber, Mater. Corros. 63, 111 (2012). CrossRefGoogle Scholar
  28. 28.
    H. Ezuber, A. El-Houd, F. El-Shawesh, Mater. Des. 29, 801 (2008). CrossRefGoogle Scholar
  29. 29.
    R. Goswami, R.L. Holtz, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 1279 (2013). CrossRefGoogle Scholar
  30. 30.
    S.W. Nam, D.H. Lee, Met. Mater. 6, 13 (2000). CrossRefGoogle Scholar
  31. 31.
    M.S. Remoe, K. Marthinsen, I. Westermann, K. Pedersen, J. Royset Mater. Sci. Eng. A 693, 60 (2017). CrossRefGoogle Scholar
  32. 32.
    N. Birbilis, R.G. Buchheit, J. Electrochem. Soc. 152, B140 (2005). CrossRefGoogle Scholar
  33. 33.
    L. Tan, T.R. Allen, Corros. Sci. 52, 548 (2010). CrossRefGoogle Scholar
  34. 34.
    C. Vargel, M. Jacques, M.P. Schmidt, Corros. Alum. (2004). Google Scholar
  35. 35.
    F. Eckermann, T. Suter, P.J. Uggowitzer, A. Afseth, P. Schmutz, Electrochim. Acta 54, 844 (2008). CrossRefGoogle Scholar
  36. 36.
    C. Luo, Role of Microstructure on Corrosion Control of AA2024-T3 Aluminium Alloy (2011)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Advanced Materials EngineeringDong-Eui UniversityBusanRepublic of Korea
  2. 2.Joining R&D GroupKorea Institute of Industrial TechnologyIncheonRepublic of Korea
  3. 3.Dongnam Regional DivisionKorea Institute of Industrial TechnologyBusanRepublic of Korea

Personalised recommendations