Skip to main content
Log in

Extended Hall–Petch Relationships for Yield, Cleavage and Intergranular Fracture Strengths of bcc Steel and Its Deformation and Fracture Behaviors

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Extended Hall–Petch relationships for yield (\( \sigma_{y} \)), cleavage (\( \sigma_{\text{cl}} \)) and intergranular fracture (\( \sigma_{\text{ig}} ) \) strengths of pure iron have been established through the direct calculation of the proportional constant \( (k) \) and the estimation of the friction stress \( (\sigma_{0} ) \). The magnitude orders of \( k \) and \( \sigma_{0} \) are generally \( k_{y} < k_{\text{cl}} < k_{\text{ig}} \) and \( \sigma_{y0} < \sigma_{\text{cl0}} < \sigma_{\text{ig0}} \), respectively. Based on the Hall–Petch relationships, micro-yielding in a bcc steel occurs at the instance that the pile-up dislocations within a specific grain showing the Schmid factor of 0.5 propagate into the neighboring grain. The initial brittle crack is formed at the instance that the flow strength exceeds the brittle fracture strength. Once the brittle crack is formed, it grows catastrophically. Due to the smallest and \( k_{y} \) and \( \sigma_{\text{y0}} \), the cleavage and the intergranular fracture occur always after micro-yielding. The {100} cleavage fracture of the steel is due to the lowest theoretical {100} cleavage strength. Due to the thermal components included in cleavage and intergranular fracture strengths, they show also the temperature and strain rate dependence observed in yield strength. The increase in susceptibility to brittle fracture with decreasing temperature and increasing strain rate is due to the increase in dislocation density which causes the high work hardening rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. N.J. Petch, J. Iron Steel Inst. 174, 25 (1953)

    Google Scholar 

  2. M. Etou, S. Fukushima, T. Sasaki, Y. Haraguchi, K. Miyata, M. Wakita, T. Tomida, N. Imai, M. Yoshida, Y. Okada, ISIJ Int. 48, 1142 (2008)

    Article  Google Scholar 

  3. A. Cracknell, N.J. Petch, Acta Metall. 3, 186 (1955)

    Article  Google Scholar 

  4. W. Sylwestrowicz, E.O. Hall, Proc. Phys. Soc. B 64, 495 (1951)

    Article  Google Scholar 

  5. E.O. Hall, Proc. Phys. Soc. B 64, 747 (1951)

    Article  Google Scholar 

  6. J. Heslop, N.J. Petch, Philos. Mag. 3, 1128 (1958)

    Article  Google Scholar 

  7. J. Harding, Acta Metall. 17, 949 (1969)

    Article  Google Scholar 

  8. J. Heslop, N.J. Petch, Philos. Mag. 1, 866 (1956)

    Article  Google Scholar 

  9. N.J. Petch, Philos. Mag. 3, 1089 (1958)

    Article  Google Scholar 

  10. V.F. Moiseev, V.I. Irefilov, Phys. Status Solidi 18, 881 (1966)

    Article  Google Scholar 

  11. J.D.S. Sumpter, J.S. Kent, Mar. Struct. 17, 575 (2004)

    Article  Google Scholar 

  12. K. Felkins, H.P. Leighly, A. Jankovic, JOM 50, 12 (1998)

    Article  Google Scholar 

  13. A. Kelly, W.R. Tyson, A.H. Cottrell, Philos. Mag. 15, 567 (1967)

    Article  Google Scholar 

  14. J.R. Rice, R. Thomson, Philos. Mag. 29, 73 (1974)

    Article  Google Scholar 

  15. P.B. Hirsch, S.G. Roberts, J. Samuels, Proc. R. Soc. Lond. A 421, 25 (1989)

    Article  Google Scholar 

  16. L. Vitos, Computational Quantum Mechanics for Materials Engineers (Springer, New York, 2007)

    Google Scholar 

  17. P. Soven, Phys. Rev. 156, 809 (1967)

    Article  Google Scholar 

  18. C. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  Google Scholar 

  19. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  Google Scholar 

  20. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  Google Scholar 

  21. E. Smith, J.T. Barnby, Met. Sci. 1, 56 (1967)

    Article  Google Scholar 

  22. A.N. Stroh, Proc. R. Soc. A 223, 404 (1954)

    Article  Google Scholar 

  23. N.T. Barrett, The Principles of Engineering Materials (Prentice-Hall, Englewood Cliffs, 1973)

    Google Scholar 

  24. F.R.N. Nabarro, Mater. Sci. Eng. A 234, 67 (1997)

    Article  Google Scholar 

  25. Y. Kamimura, K. Edagawa, S. Takeuchi, Acta Mater. 61, 294 (2013)

    Article  Google Scholar 

  26. E. Orowan, Rep. Prog. Phys. 12, 185 (1949)

    Article  Google Scholar 

  27. W. Köster, H. Franz, Metall. Rev. 6, 1 (1961)

    Google Scholar 

  28. M.P. Seah, E.D. Hondros, Proc. R. Soc. Lond. A 335, 191 (1973)

    Article  Google Scholar 

  29. S.A. Kim, W.L. Johnson, Mater. Sci. Eng. A 452–453, 633 (2007)

    Article  Google Scholar 

  30. N.H. Heo, J.W. Nam, Y.-U. Heo, S.-J. Kim, Acta Mater. 61, 4022 (2013)

    Article  Google Scholar 

  31. J.W. Morris Jr., C.S. Lee, Z. Guo, ISIJ Int. 43, 410 (2003)

    Article  Google Scholar 

  32. S. Morito, T. Ogawa, T. Furuhara, T. Maki, ISIJ Int. 46, 91 (2005)

    Article  Google Scholar 

  33. S. Morito, H. Yoshida, T. Maki, X. Huang, Mater. Sci. Eng. A 438–440, 237 (2006)

    Article  Google Scholar 

  34. J. Hidalgo, M.J. Santofimia, Metall. Mater. Trans. A 47, 5288 (2016)

    Article  Google Scholar 

  35. W.C. Leslie, Metall. Trans. 3, 5 (1972)

    Article  Google Scholar 

  36. G. Wand, S. Schonecker, S. Hertzman, Q.-M. Hu, B. Johansson, Phys. Rev. B 91, 224203 (2015)

    Article  Google Scholar 

  37. M.P. Seah, Acta Metall. 28, 955 (1980)

    Article  Google Scholar 

  38. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, Selected Values of the Thermodynamic Properties of Elements and Selected Values of the Thermodynamic Properties of Binary Alloys (ASM, Metals Park, 1973)

    Google Scholar 

  39. N.H. Heo, Age Hardening and DuctileBrittleDuctile Transition in FeMnNiX Alloys. Ph.D. thesis (1993)

  40. D. McLean, Grain Boundaries in Metals (Oxford University Press, London, 1957)

    Google Scholar 

  41. N.H. Heo, Acta Mater. 44, 2015 (1996)

    Google Scholar 

  42. J.W. Morris Jr., Z. Guo, C.R. Krenn, Y.-H. Kim, ISIJ Int. 41, 599 (2001)

    Article  Google Scholar 

  43. R.E. Mistler, R.L. Coble, J. Appl. Phys. 45, 1507 (1974)

    Article  Google Scholar 

  44. A. Inoue, H. Nitta, Y. Iijima, Acta Mater. 55, 5910 (2007)

    Article  Google Scholar 

  45. J. Benito, J. Jorba, J.M. Manero, A. Roca, Metall. Mater. Trans. A 36, 3317 (2005)

    Article  Google Scholar 

  46. H.M. Ledbetter, S.A. Kim, Mater. Sci. Eng. A 101, 87 (1988)

    Google Scholar 

  47. J.A. Rayne, B.S. Chandrasekhar, Phys. Rev. 122, 1714 (1961)

    Article  Google Scholar 

  48. R. Armstrong, I. Codd, R.M. Douthwaite, N.J. Petch, Philos. Mag. 7, 45 (1962)

    Article  Google Scholar 

  49. N. Hansen, Acta Metall. 25, 863 (1977)

    Article  Google Scholar 

  50. N. Hansen, B. Ralph, Acta Metall. 30, 411 (1982)

    Article  Google Scholar 

  51. N.H. Heo, Y.-U. Heo, S.-J. Kim, ISIJ Int. 56, 1096 (2016)

    Google Scholar 

  52. C.J. McMahon Jr., M. Cohen, Acta Metall. 13, 591 (1965)

    Article  Google Scholar 

  53. N.H. Heo, K.H. Chai, J.G. Na, Acta Mater. 48, 2901 (2000)

    Article  Google Scholar 

  54. J.M. Howe, Interfaces in Materials (Wiley, New York, 1997)

    Google Scholar 

  55. E.O. Hall, Proc. Phys. Soc. B 64, 742 (1951)

    Article  Google Scholar 

  56. W.C. Leslie, The Physical Metallurgy of Steels (McGraw-Hill, New York, 1982)

    Google Scholar 

  57. J. Daming, W. Yinong, H. Bande, L. Tingquan, J. Mater. Sci. Lett. 15, 1597 (1996)

    Google Scholar 

  58. S.S. Hecker, D.L. Rohr, D.F. Stein, Metall. Trans. A 9, 481 (1978)

    Article  Google Scholar 

  59. R.L. Tobler, D. Meyn, Metall. Trans. A 19, 1626 (1988)

    Article  Google Scholar 

  60. J.R. Low Jr., Relation of Properties to Microstructure (American Society for Metals, Cleveland, 1954)

    Google Scholar 

  61. C. Crussard, R. Borione, J. Plateau, Y. Morillon, F. Maratray, J. Iron Steel Inst. 183, 146 (1956)

    Google Scholar 

  62. D.F. Stein, J.R. Low Jr., A.U. Seybolt, Acta Metall. 11, 1253 (1963)

    Article  Google Scholar 

  63. D. Hull, Acta Metall. 9, 191 (1961)

    Article  Google Scholar 

  64. N.J. Petch, Philos. Mag. 1, 186 (1956)

    Article  Google Scholar 

  65. C. Zener, ASM 40, Fract. Metals 3 (1948)

  66. A.H. Cottrell, Trans. AIME 212, 192 (1958)

    Google Scholar 

  67. J.P. Berry, J. Mech. Phys. Solids 8, 194 (1960)

    Article  Google Scholar 

  68. J.R. Willis, J. Mech. Phys. Solids 15, 151 (1967)

    Article  Google Scholar 

  69. J.P. Hirsh, J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968)

    Google Scholar 

  70. B. Zhu, R.J. Asaro, P. Krysl, R. Bailey, Acta Mater. 53, 4825 (2005)

    Article  Google Scholar 

  71. W.A. Spitzig, A.S. Keh, Acta Metall. 18, 611 (1970)

    Article  Google Scholar 

  72. C. Jude-Esser, F. Grimpe, W. Dahl, ECF 10, 1017 (1994)

    Google Scholar 

  73. H. Dünnewald-Arfmann, M. Twickler, R. Twickler, W. Dahl, in Proceedings of ICSMA 8, vol. 2 (1988), p. 1063

  74. J.W. Morris, Science 320, 1022 (2008)

    Article  Google Scholar 

  75. Y. Lan, H.J. Klaar, W. Dahl, Metall. Trans. A 23, 537 (1992)

    Article  Google Scholar 

  76. A. Lawley, H.L. Gaigher, Philos. Mag. 10, 15 (1964)

    Article  Google Scholar 

  77. A. Gilbert, B.A. Wilcox, G.T. Hahn, Philos. Mag. 12, 649 (1965)

    Article  Google Scholar 

  78. W.B. Morrison, W.C. Leslie, Metall. Trans. 4, 379 (1973)

    Article  Google Scholar 

  79. N. Nakada, M. Fujihara, T. Tsuchiyama, T. Takaki, ISIJ Int. 51, 1169 (2011)

    Article  Google Scholar 

  80. I. Samajdar, B. Verlinden, P. Van Houtte, D. Vanderschueren, Mater. Sci. Eng. A 238, 343 (1997)

    Article  Google Scholar 

  81. N.H. Heo, J.W. Yim, J. Korean Phys. Soc. 44, 1547 (2004)

    Google Scholar 

  82. R.A. Masumura, P.M. Hazzledine, P.K. Liaw, E.J. Lavernia, Acta Metall. 13, 4527 (1998)

    Google Scholar 

  83. J. Schiøtz, D.D. Di Tolla, K.W. Jacobsen, Nature 391, 561 (1998)

    Article  Google Scholar 

  84. H. Van Swygenhoven, Science 296, 66 (2002)

    Article  Google Scholar 

  85. J. Schiøtz, K.W. Jacobsen, Science 301, 1357 (2003)

    Article  Google Scholar 

  86. F.P. Buff, J. Chem. Phys. 19, 1591 (1951)

    Article  Google Scholar 

  87. K.P.D. Lagerlöf, J. Castaing, P. Pirouz, A.H. Heuer, Philos. Mag. 82A, 2841 (2002)

    Article  Google Scholar 

  88. J. Lian, B. Baudelet, Nanostruct. Mat. 2, 415 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Y. S. Shin and Mr. H. J. Sung for mechanical tests and Mrs. J. H. Yoon for AES analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. H. Heo or Y.-U. Heo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, N.H., Heo, YU., Kwon, S.K. et al. Extended Hall–Petch Relationships for Yield, Cleavage and Intergranular Fracture Strengths of bcc Steel and Its Deformation and Fracture Behaviors. Met. Mater. Int. 24, 265–281 (2018). https://doi.org/10.1007/s12540-018-0026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0026-6

Keywords

Navigation