Skip to main content
Log in

Brittle fracture in iridium

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Brittle fracture in fcc metals is uncommon. It is not common knowledge that single crystals of iridium, a high melting point fcc metal, fail by brittle cleavage at room temperature. Furthermore, polycrystalline iridium fails predominantly by brittle inter granular fracture at temperatures below 1000°C. With the aid of several models of brittle fracture we have demonstrated that cleavage in iridium is intrinsic, resulting from apparently very strong and directed atomic binding forces. Intergranular fracture in iridium has been generally assumed to arise from the segregation of harmful impurities to the grain boundaries. We were able to demonstrate using Auger electron spectroscopy that impurity segregation to grain boundaries in iridium was not necessary for grain boundary fracture to occur, thereby demonstrating that intergranular brittle fracture in polycrystalline iridium is also intrinsic and not impurity related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Douglass, A. Krier, and R. I. Jaffee: Battelle Memorial Institute Report NP-10939, Aug. 1961.

  2. R. W. Douglass and R. I. Jaffcc:Proc. ASTM, 1962, vol. 62, pp. 627–37.

    CAS  Google Scholar 

  3. F. C. Holden, R. W. Douglass, and R. I. Jaffcc:Symposium on Newer Metals, ASTM-STP 272, pp. 68-79, 1960.

  4. B. L. Mordike and C. A. Brookes:Plat. Met. Rev., 1960, vol. 4, pp. 94–99.

    Google Scholar 

  5. G. Remacher:Metall, 1964, vol. 18, pp. 73 MO.

    Google Scholar 

  6. G. Remacher:Z. Metallk., 1967, vol. 58, pp. 831–36.

    Google Scholar 

  7. H. Hieber, B. L. Mordike, and P. Haasen:Plat. Met. Rev., 1964, vol. 8, pp. 102–06.

    CAS  Google Scholar 

  8. P. Haasen, H. Hieber, and B. L. Mordike:Z. Metallk., 1965, vol. 56, pp. 832–41.

    CAS  Google Scholar 

  9. M. A. Fortes and B. Ralph:Phil. Mag., 1968, vol. 18, pp. 787–805.

    CAS  Google Scholar 

  10. C. A. Brookes, J. H. Greenwood, and J. L. Routbort:J. Inst. Metals, 1970, vol. 98, pp. 27–31.

    CAS  Google Scholar 

  11. A. Brookes, J. H. Greenwood, and J. L. Routbort:J. Appl. Phys., 1968, vol. 39, pp. 2391–95.

    Article  CAS  Google Scholar 

  12. C. N. Reid and J. L. Routbort:Met. Trans., 1972, vol. 3, pp. 2257–60.

    Article  CAS  Google Scholar 

  13. A. S. Darling:Intern. Met. Rev., 1973, vol. 18, pp. 91–122.

    CAS  Google Scholar 

  14. General Electric Corp., Multihundred Watt Radioisotope Thermoelectric Generator Program, Document No. GEMS-419, vol. 1, Philadelphia, Pa., March 1975.

  15. S. F. Pugh:Phil. Mag., 1954, vol. 45, pp. 823–43.

    CAS  Google Scholar 

  16. H. A. Elliott:Proc. Phys. Soc, 1947, vol. 59, pp. 208–23.

    Article  Google Scholar 

  17. W. Köster:Appl. Sci. Res., 1953-54, vol. 4, pp. 329–35.

    Google Scholar 

  18. J. P. Hirth and J. Lothe:Theory of Dislocations, McGraw Hill, New York, 1968.

    Google Scholar 

  19. R. E. McFarlane, J. A. Rayne, and C. K. Jones:Phys. Lett., 1966, vol. 20, pp. 234–35.

    Article  Google Scholar 

  20. A. Kelly, W. R. Tyson, and A. H. Cottrell:Phil. Mag., 1967, vol. 15, pp. 567–86.

    CAS  Google Scholar 

  21. A. Kelly:Strong Solids, 2nd ed., Clarendon Press, Oxford, 1973.

    Google Scholar 

  22. N. H. MacMillan:J. Mater. Sci., 1972, vol. 7, pp. 239–54.

    Article  CAS  Google Scholar 

  23. M. Polanyi:Z. Phys., 1921, vol. 7, pp. 323–27.

    Article  CAS  Google Scholar 

  24. E. Orowan:Z. Krist., 1934, vol. A89, pp. 327–43.

    Google Scholar 

  25. W. R. Tyson, R. A. Ayres, and D. F. Stein:Acta Met., 1973, vol. 21, pp. 621–27.

    Article  CAS  Google Scholar 

  26. J. Frenkel:Z. Phys., 1926, vol. 37, pp. 572–609.

    Article  Google Scholar 

  27. J. R. Rice and R. Thomson:Phil. Mag., 1974, vol. 29, pp. 73–97.

    CAS  Google Scholar 

  28. W. R. Tyson:Atomistic Simulation of the Ductile/Brittle Transition, 1976, S-AIME Fall Meeting, Niagara Falls, N.Y., Sept. 20, 1976.

  29. J. J. Gilman:Fracture, B. L. Averbach, D. K. Felbeck, G. T. Hahn, and D. A. Thomas, eds., pp. 193–224, J. Wiley, New York, 1959.

    Google Scholar 

  30. J. J. Gilman:Fracture of Solids, D. C. Drucker and J. J. Gilman, eds., pp. 541–49, J. Wiley, New York, 1963.

    Google Scholar 

  31. R. A. Ayres and D. F. Stein:Acta Met., 1971, vol. 19, pp. 789–94.

    Article  CAS  Google Scholar 

  32. J. F. Nicholas:Aust. J. Phys., 1968, vol. 21, pp. 21–34.

    CAS  Google Scholar 

  33. F.Cyrot-Lackman:Serface Sci., 1969, vol. 15, pp. 535–48.

    Article  Google Scholar 

  34. W. L. Winterbottom:Acta Met., 1967, vol. 15, pp. 303–10.

    Article  CAS  Google Scholar 

  35. B. E. SundquistActa Met., 1964, vol. 12, pp. 67–86.

    Article  CAS  Google Scholar 

  36. W. L. Winterbottom:Surfaces and Interfaces I, J. J. Burke, N. L. Reed, and V. Weiss, eds., p. 133, Syracuse University Press. Syracuse, N.Y., 1967.

    Google Scholar 

  37. A. S. Tetelman:Fracture of Solids, D. C. Drucker and J. J. Gilman, eds., pp. 461–501, J. Wiley, New York, 1963.

    Google Scholar 

  38. J. Friedel:Fracture, B. L. Averbach,et al, eds., pp. 498–523, J. Wiley, New York, 1959.

    Google Scholar 

  39. J. R. Low, Jr.:Trans. TMS-AIME, 1969, vol. 245, pp. 2481–94.

    CAS  Google Scholar 

  40. J. Plateau, G. Henry, and C. Crussard:Trois Colloq. Met. Centre Etudes Nucléaires, Saclay, 1969, p. 185.

  41. A. Joshi and D. F. Stein:J. Inst. Metals, 1971, vol. 99, pp. 178–81.

    CAS  Google Scholar 

  42. D. McLean:J. Inst. Metals, 1952, vol. 81, pp. 121–23.

    CAS  Google Scholar 

  43. A. Joshi and D. F. Stein:Met. Trans., 1970, vol. 1, pp. 2543–46.

    CAS  Google Scholar 

  44. B. E. Hopkins and H. R. Tipler:J. Iron Steel Inst., 1958. vol. 188, pp. 218–37.

    CAS  Google Scholar 

  45. J. R. Low, Jr., D. F. Stein, A. M. Turkalo, and R. P. LaForce:Trans. TMS- AIME, 1968, vol. 242, pp. 14–24.

    CAS  Google Scholar 

  46. W. Steven and V. Balajiva:J. Iron Steel Inst., 1959, vol. 193, pp. 141–47.

    CAS  Google Scholar 

  47. A. Joshi and D. F. Stein:Temper Embrittlement of Alloy Steels, ASTM-STP- 499, 1972, pp. 59-89.

  48. C. E. Frantz and S. S. Hecker: Los Alamos Scientific Laboratory Report, LA-6528,Nov. 1976.

  49. A. Joshi and D. F. Stein:J. Test. Eval., 1973, vol. 1, pp. 202–08.

    Article  CAS  Google Scholar 

  50. D. F. Stein, A. Joshi, and R. P. LaForce:Trans. ASM, 1969, vol. 62, pp. 776–83.

    CAS  Google Scholar 

  51. R. G. Linford:Sol. State Surf. Sci., 1973. vol. 2, pp. 1–143.

    CAS  Google Scholar 

  52. L. E. Murr:Interfacial Phenomena in Metals and Alloys, Addison-Wesley Publishing Co.. Reading, Mass., 1975, pp. 87–164.

    Google Scholar 

  53. H. Jones:Met. Sci. J.. 1971, vol. 5, pp. 15–18.

    Article  CAS  Google Scholar 

  54. C. L. Rynolds, Jr., P. R. Couchman, and F. E. Karasz:Phil Mag., 1976, vol. 34, pp. 659–61.

    Google Scholar 

  55. B. C. Allen:Trans. TMS-AIME, 1963, vol. 227, pp. 1175–83.

    CAS  Google Scholar 

  56. H. G. Purwins, H. Hieber, and R. Labusch:Phys. Stat. Sol, 1965, vol. 11, pp. K63–66.

    CAS  Google Scholar 

  57. W. R. Tyson and W. A. Miller:Surf. Sci., 1977, vol. 62, pp. 267–76.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hecker, S.S., Rohr, D.L. & Stein, D.F. Brittle fracture in iridium. Metall Trans A 9, 481–488 (1978). https://doi.org/10.1007/BF02646403

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646403

Keywords

Navigation