Skip to main content
Log in

New exact approaches to row layout problems

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

Given a set of departments, a number of rows and pairwise connectivities between these departments, the multi-row facility layout problem (MRFLP) looks for a non-overlapping arrangement of these departments in the rows such that the weighted sum of the center-to-center distances is minimized. As even small instances of the MRFLP are rather challenging, several special cases have been considered in the literature. In this paper we present new mixed-integer linear programming formulations for the (space-free) multi-row facility layout problem with given assignment of the departments to the rows that combine distance and betweenness variables. Using these formulations instances with up to 25 departments can be solved to optimality (within at most 6 h) for the first time. Furthermore, we are able to reduce the running times for instances with up to 23 departments significantly in comparison to the literature. Later on we use these formulations in an enumeration scheme for solving the (space-free) multi-row facility layout problem. In particular, we test all possible row assignments, where some assignments are excluded due to our new combinatorial investigations. For the first time this approach enables us to solve instances with two rows with up to 16 departments, with three rows with up to 15 departments and with four and five rows with up to 13 departments exactly in reasonable time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahmadi, A., Pishvaee, M.S., Jokar, M.R.A.: A survey on multi-floor facility layout problems. Comput. Ind. Eng. 107, 158–170 (2017). https://doi.org/10.1016/j.cie.2017.03.015

    Article  Google Scholar 

  2. Ahonen, H., de Alvarenga, A.G., Amaral, A.R.S.: Simulated annealing and tabu search approaches for the corridor allocation problem. Eur. J. Oper. Res. 232(1), 221–233 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amaral, A.R.: A mixed-integer programming formulation for the double row layout of machines in manufacturing systems. Int. J. Prod. Res. 57(1), 34–47 (2019). https://doi.org/10.1080/00207543.2018.1457811

    Article  Google Scholar 

  4. Amaral, A.R.S.: On the exact solution of a facility layout problem. Eur. J. Oper. Res. 173(2), 508–518 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amaral, A.R.S.: An exact approach to the one-dimensional facility layout problem. Oper. Res. 56(4), 1026–1033 (2008). https://doi.org/10.1287/opre.1080.0548

    Article  MathSciNet  MATH  Google Scholar 

  6. Amaral, A.R.S.: A mixed 0–1 linear programming formulation for the exact solution of the minimum linear arrangement problem. Optim. Lett. 3(4), 513–520 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Amaral, A.R.S.: A new lower bound for the single row facility layout problem. Discrete Appl. Math. 157(1), 183–190 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Amaral, A.R.S.: On duplex arrangement of vertices. Technical report, Departamento de Informática, Universidade Federal do Espírito Santo (UFES), Brazil (2011)

  9. Amaral, A.R.S.: The corridor allocation problem. Comput. Oper. Res. 39(12), 3325–3330 (2012)

    Article  MATH  Google Scholar 

  10. Amaral, A.R.S.: Optimal solutions for the double row layout problem. Optim. Lett. 7(2), 407–413 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Amaral, A.R.S.: A parallel ordering problem in facilities layout. Comput. Oper. Res. 40(12), 2930–2939 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Amaral, A.R.S., Letchford, A.N.: A polyhedral approach to the single row facility layout problem. Math. Program. 141(1–2), 453–477 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Anjos, M.F., Fischer, A., Hungerländer, P.: Improved exact approaches for row layout problems with departments of equal length. Eur. J. Oper. Res. 270(2), 514–529 (2018). https://doi.org/10.1016/j.ejor.2018.04.008

    Article  MathSciNet  MATH  Google Scholar 

  14. Anjos, M.F., Kennings, A., Vannelli, A.: A semidefinite optimization approach for the single-row layout problem with unequal dimensions. Discrete Optim. 2(2), 113–122 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Anjos, M.F., Liers, F.: Global approaches for facility layout and VLSI floorplanning. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization, International Series in Operations Research & Management Science, vol. 166, pp. 849–877. Springer, New York (2012)

    MATH  Google Scholar 

  16. Anjos, M.F., Vannelli, A.: Computing globally optimal solutions for single-row layout problems using semidefinite programming and cutting planes. INFORMS J. Comput. 20(4), 611–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Anjos, M.F., Vieira, M.V.: Mathematical optimization approaches for facility layout problems: the state-of-the-art and future research directions. Eur. J. Oper. Res. 261(1), 1–16 (2017). https://doi.org/10.1016/j.ejor.2017.01.049

    Article  MathSciNet  MATH  Google Scholar 

  18. Anjos, M.F., Yen, G.: Provably near-optimal solutions for very large single-row facility layout problems. Optim. Methods Softw. 24(4), 805–817 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Azevedo, M.M., Crispim, J.A., de Sousa, J.P.: A dynamic multi-objective approach for the reconfigurable multi-facility layout problem. J. Manuf. Syst. 42, 140–152 (2017). https://doi.org/10.1016/j.jmsy.2016.12.008

    Article  Google Scholar 

  20. Bracht, U., Dahlbeck, M., Fischer, A., Krüger, T.: Combining simulation and optimization for extended double row facility layout problems in factory planning. In: Baum, M., Brenner, G., Grabowski, J., Hanschke, T., Hartmann, S., Schöbel, A. (eds.) Simulation Science, pp. 39–59. Springer International Publishing, Cham (2018)

    Chapter  MATH  Google Scholar 

  21. Brusco, M., Stahl, S.: Using quadratic assignment methods to generate initial permutations for least-squares unidimensional scaling of symmetric proximity matrices. J. Classif. 17(2), 197–223 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Caprara, A., Oswald, M., Reinelt, G., Schwarz, R., Traversi, E.: Optimal linear arrangements using betweenness variables. Math. Program. Comput. 3(3), 261–280 (2011). https://doi.org/10.1007/s12532-011-0027-7

    Article  MathSciNet  MATH  Google Scholar 

  23. Castillo, I., Peters, B.A.: Integrating design and production planning considerations in multi-bay manufacturing facility layout. Eur. J. Oper. Res. 157(3), 671–687 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chung, J., Suh, Y.: Analysis on the pier-type material flow pattern for facility layout applications. J. Appl. Sci. 14(3), 237–244 (2014)

    Article  Google Scholar 

  25. Chung, J., Tanchoco, J.: The double row layout problem. Int. J. Prod. Res. 48(3), 709–727 (2010)

    Article  MATH  Google Scholar 

  26. Datta, D., Amaral, A.R.S., Figueira, J.R.: Single row facility layout problem using a permutation-based genetic algorithm. Eur. J. Oper. Res. 213(2), 388–394 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ficko, M., Brezocnik, M., Balic, J.: Designing the layout of single- and multiple-rows flexible manufacturing system by genetic algorithms. J. Mater. Process. Technol. 157–158, 150–158 (2004)

    Article  Google Scholar 

  28. Fischer, A., Fischer, F., Hungerländer, P.: A new exact approach to the space-free double row layout problem. In: Doerner, K.F., Ljubic, I., Pflug, G., Tragler, G. (eds.) Operations Research Proceedings 2015, Selected Papers of the International Conference of the German, Austrian and Swiss Operations Research Societies (GOR, ÖGOR, SVOR/ASRO), University of Vienna, Austria, September 1–4, 2015, Operations Research Proceedings, pp. 125–130. Springer (2015). https://doi.org/10.1007/978-3-319-42902-1_17

    Google Scholar 

  29. Fischer, A., Fischer, F., Hungerländer, P.: Program code to new exact approaches to row layout problems (2019). https://doi.org/10.5281/zenodo.2653716

    Article  Google Scholar 

  30. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  31. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  32. Geoffrion, A., Graves, G.: Scheduling parallel production lines with changeover costs: practical applications of a quadratic assignment/LP approach. Oper. Res. 24, 595–610 (1976)

    Article  MATH  Google Scholar 

  33. Grötschel, M., Jünger, M., Reinelt, G.: A cutting plane algorithm for the linear ordering problem. Oper. Res. 32(6), 1195–1220 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Grötschel, M., Jünger, M., Reinelt, G.: Facets of the linear ordering polytope. Math. Program. 33, 43–60 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  35. Guan, J., Lin, G.: Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem. Eur. J. Oper. Res. 248(3), 899–909 (2016). https://doi.org/10.1016/j.ejor.2015.08.014

    Article  MathSciNet  MATH  Google Scholar 

  36. Hassan, M.M.D.: Machine layout problem in modern manufacturing facilities. Int. J. Prod. Res. 32(11), 2559–2584 (1994)

    Article  MATH  Google Scholar 

  37. Heragu, S.S., Kusiak, A.: Machine layout problem in flexible manufacturing systems. Oper. Res. 36(2), 258–268 (1988)

    Article  Google Scholar 

  38. Heragu, S.S., Kusiak, A.: Efficient models for the facility layout problem. Eur. J. Oper. Res. 53(1), 1–13 (1991)

    Article  MATH  Google Scholar 

  39. Hosseini-Nasab, H., Fereidouni, S., Fatemi Ghomi, S.M.T., Fakhrzad, M.B.: Classification of facility layout problems: a review study. Int. J. Adv. Manuf. Technol. 94(1), 957–977 (2018). https://doi.org/10.1007/s00170-017-0895-8

    Article  Google Scholar 

  40. Hungerländer, P.: A semidefinite optimization approach to the parallel row ordering problem. Technical report, Alpen-Adria Universität Klagenfurt, Mathematics, Optimization Group, TR-ARUK-M-O-14-05 (2014)

  41. Hungerländer, P.: Single-row equidistant facility layout as a special case of single-row facility layout. Int. J. Prod. Res. 52(5), 1257–1268 (2014)

    Article  Google Scholar 

  42. Hungerländer, P., Anjos, M.F.: A semidefinite optimization approach to space-free multi-row facility layout. Cahiers du GERAD G-2012-03, GERAD, Montreal, QC, Canada (2012)

  43. Hungerländer, P., Anjos, M.F.: A semidefinite optimization-based approach for global optimization of multi-row facility layout. Eur. J. Oper. Res. 245(1), 46–61 (2015). https://doi.org/10.1016/j.ejor.2015.02.049

    Article  MathSciNet  MATH  Google Scholar 

  44. Hungerländer, P., Rendl, F.: A computational study and survey of methods for the single-row facility layout problem. Comput. Optim. Appl. 55(1), 1–20 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hungerländer, P., Rendl, F.: Semidefinite relaxations of ordering problems. Math. Program. 140(1), 77–97 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. IBM ILOG CPLEX V12.8 User’s Manual for CPLEX (2018)

  47. Keller, B.: Construction heuristics for the single row layout problem with machine-spanning clearances. INFOR 57, 1–24 (2017). https://doi.org/10.1080/03155986.2017.1393729

    Article  Google Scholar 

  48. Keller, B., Buscher, U.: Single row layout models. Eur. J. Oper. Res. 245(3), 629–644 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kothari, R., Ghosh, D.: Population heuristics for the corridor allocation problem. Technical report, working paper, Indian Institute of Management Ahmedabad (2012)

  50. Kothari, R., Ghosh, D.: The single row facility layout problem: state of the art. OPSEARCH 49(4), 442–462 (2012). https://doi.org/10.1007/s12597-012-0091-4

    Article  MathSciNet  MATH  Google Scholar 

  51. Kothari, R., Ghosh, D.: Insertion based Lin–Kernighan heuristic for single row facility layout. Comput. Oper. Res. 40(1), 129–136 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kothari, R., Ghosh, D.: Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods. Eur. J. Oper. Res. 224(1), 93–100 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kothari, R., Ghosh, D.: An efficient genetic algorithm for single row facility layout. Optim. Lett. 8(2), 679–690 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kothari, R., Ghosh, D.: A scatter search algorithm for the single row facility layout problem. J. Heuristics 20(2), 125–142 (2014)

    Article  Google Scholar 

  55. Laporte, G., Mercure, H.: Balancing hydraulic turbine runners: a quadratic assignment problem. Eur. J. Oper. Res. 35(3), 378–381 (1988)

    Article  Google Scholar 

  56. Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. Eur. J. Oper. Res. 176(2), 657–690 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Love, R., Wong, J.: On solving a one-dimensional space allocation problem with integer programming. INFOR 14(2), 139–143 (1976). https://doi.org/10.1080/03155986.1976.11731633

    Article  MATH  Google Scholar 

  58. Maadi, M., Javidnia, M., Jamshidi, R.: Two strategies based on meta-heuristic algorithms for parallel row ordering problem (PROP). Iran. J. Manag. Stud. 10(2), 467–498 (2017). https://doi.org/10.22059/ijms.2017.216663.672285

    Article  Google Scholar 

  59. Meller, R.D.: The multi-bay manufacturing facility layout problem. Int. J. Prod. Res. 35(5), 1229–1237 (1997)

    Article  MATH  Google Scholar 

  60. Murray, C.C., Smith, A.E., Zhang, Z.: An efficient local search heuristic for the double row layout problem with asymmetric material flow. Int. J. Prod. Res. 51(20), 6129–6139 (2013)

    Article  Google Scholar 

  61. Ozcelik, F.: A hybrid genetic algorithm for the single row layout problem. Int. J. Prod. Res. 50(20), 5872–5886 (2012). https://doi.org/10.1080/00207543.2011.636386

    Article  Google Scholar 

  62. Palubeckis, G.: A branch-and-bound algorithm for the single-row equidistant facility layout problem. OR Spectr. 34(1), 1–21 (2012). https://doi.org/10.1007/s00291-010-0204-5

    Article  MathSciNet  MATH  Google Scholar 

  63. Palubeckis, G.: Fast local search for single row facility layout. Eur. J. Oper. Res. 246(3), 800–814 (2015). https://doi.org/10.1016/j.ejor.2015.05.055

    Article  MathSciNet  MATH  Google Scholar 

  64. Palubeckis, G.: Single row facility layout using multi-start simulated annealing. Comput. Ind. Eng. 103, 1–16 (2017). https://doi.org/10.1016/j.cie.2016.09.026

    Article  Google Scholar 

  65. Samarghandi, H., Eshghi, K.: An efficient tabu algorithm for the single row facility layout problem. Eur. J. Oper. Res. 205(1), 98–105 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  66. Sanjeevi, S., Kianfar, K.: A polyhedral study of triplet formulation for single row facility layout problem. Discrete Appl. Math. 158, 1861–1867 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. Sarker, B., Wilhelm, W., Hogg, G.: One-dimensional machine location problems in a multi-product flowline with equidistant locations. Eur. J. Oper. Res. 105(3), 401–426 (1998)

    Article  MATH  Google Scholar 

  68. Secchin, L.D., Amaral, A.R.S.: Disposição de facilidades em fila dupla via programação inteira mista. In: XLVI SBPO - Simpósio Brasileiro de Pesquisa Operacional, pp. 2327–2334 (2014). http://ws2.din.uem.br/~ademir/sbpo/sbpo2014/pdf/arq0354.pdf

  69. Secchin, L.D., Amaral, A.R.S.: An improved mixed-integer programming model for the double row layout of facilities. Optim. Lett. 13(1), 193–199 (2019). https://doi.org/10.1007/s11590-018-1263-9

    Article  MathSciNet  MATH  Google Scholar 

  70. Smith, A.E., Murray, C.C., Zuo, X.: An extended double row layout problem. In: Proceedings of the 12th International Material Handling Research Colloquium, pp. 554–569 (2012)

  71. Tang, L., Zuo, X., Wang, C., Zhao, X.: A moea/d based approach for solving robust double row layout problem. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 1966–1973 (2015). https://doi.org/10.1109/CEC.2015.7257126

  72. Tucker, A.W.: On directed graphs and integer programs. Technical report, IBM Mathematical Research Project (1960)

  73. Wang, S., Zuo, X., Liu, X., Zhao, X., Li, J.: Solving dynamic double row layout problem via combining simulated annealing and mathematical programming. Appl. Soft Comput. 37, 303–310 (2015). https://doi.org/10.1016/j.asoc.2015.08.023

    Article  Google Scholar 

  74. Wess, B., Zeitlhofer, T.: On the phase coupling problem between data memory layout generation and address pointer assignment. In: Schepers, H. (ed.) Software and Compilers for Embedded Systems, Lecture Notes in Computer Science, vol. 3199, pp. 152–166. Springer, Berlin Heidelberg (2004)

    Chapter  Google Scholar 

  75. Younger, D.H.: Minimum feedback arc sets for a directed graph. IEEE Trans. Circuit Theory 10(2), 238–245 (1963)

    Article  Google Scholar 

  76. Zhang, Z., Murray, C.C.: A corrected formulation for the double row layout problem. Int. J. Prod. Res. 50(15), 4220–4223 (2012)

    Article  Google Scholar 

  77. Zuo, X., Murray, C., Smith, A.: Sharing clearances to improve machine layout. Int. J. Prod. Res. 54(14), 4272–4285 (2016). https://doi.org/10.1080/00207543.2016.1142134

    Article  Google Scholar 

  78. Zuo, X., Murray, C.C., Smith, A.E.: Solving an extended double row layout problem using multiobjective tabu search and linear programming. IEEE Trans. Autom. Sci. Eng. 11(4), 1122–1132 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Simulation Science Center Clausthal–Göttingen. We thank two anonymous referees for their valuable comments that helped to improve the paper. Furthermore we thank A. Amaral for sending us several DRFLP instances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Fischer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A short paper containing some of the results on the parallel row ordering problem and the space-free double-row facility layout problem without proofs appeared in the Proceedings of the OR 2015 [28].

Appendix

Appendix

In the following we repeat the DRFLP model of Secchin and Amaral presented in [68, 69] and show how these ideas can be used to improve the SF-DRFLP model of Amaral [9] as well. For an DRFLP instance given by n departments with lengths \(\ell _i, i\in [n],\) pairwise transport weights \(w_{ij},i,j\in [n], i<j,\) and two rows we use the position variables \({\tilde{x}}_i, i\in [n],\) distance variables \({\tilde{d}}_{ij}, i,j\in [n],i<j,\) and binary ordering variables \({\tilde{\alpha }}_{ij}, i,j\in [n], i\ne j,\) that are one if and only if department i lies left to department j in the same row, otherwise they are zero. In comparison to [10] we additionally use the binary betweenness-type variables \({\tilde{y}}_{ijk},i,j,k\in [n], |\{i,j,k\}|=3,i<k,\) with the interpretation

$$\begin{aligned} {\tilde{y}}_{ijk} = {\left\{ \begin{array}{ll} 1, &{} j\text { lies between departments }i,k\text { in the same row},\\ 0, &{} \text { otherwise}. \end{array}\right. } \end{aligned}$$

We set \(L:=\sum _{i\in [n]} \ell _i\). Then the model reads:

(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)

Additionally, Secchin and Amaral introduced the following constraints:

$$\begin{aligned}&\left. \begin{array}{l}{\tilde{d}}_{ij}\le {\tilde{d}}_{ik}+{\tilde{d}}_{jk}, \\ {\tilde{d}}_{ik}\le {\tilde{d}}_{ij}+{\tilde{d}}_{jk}, \\ {\tilde{d}}_{jk}\le {\tilde{d}}_{ij}+{\tilde{d}}_{ik},\end{array}\right\}&i,j,k\in [n],i<j<k, \end{aligned}$$
(48)
$$\begin{aligned}&\left. \begin{array}{l}{\tilde{y}}_{ikj} \le {\tilde{\alpha }}_{ik}+{\tilde{\alpha }}_{ki},\\ {\tilde{y}}_{ikj} \le {\tilde{\alpha }}_{ij}+{\tilde{\alpha }}_{ji},\\ {\tilde{y}}_{ikj} \le {\tilde{\alpha }}_{jk}+{\tilde{\alpha }}_{kj},\end{array}\right\}&i,j,k\in [n], |\{i,j,k\}|=3, i<j. \end{aligned}$$
(49)

After an analysis of the running times of different separation variants, it was suggested in [69] to use the triangle constraints (48) from the beginning and to not use (49). In our tests in Sect. 6, where we compare our new models with approaches from the literature, we use the same variant. Additionally, for the DRFLP we strengthened the model above by reducing the value of L according to Lemma 10.

Finally, we show how the SF-DRFLP model in [9] can be strengthened using the ideas above. In this model position variables \({\tilde{x}}_i, i\in [n],\) are not needed because the left border is fixed and spaces between neighboring departments are not allowed. So one can get rid of them. Using the variables \({\tilde{\alpha }}_{ij}, {\tilde{d}}_{ij}, i,j\in [n], i\ne j,\) as well as the betweenness variables \({\tilde{y}}_{ijk}, i,j,k\in [n], |\{i,j,k\}|=3, i<k,\) from above the extended model reads:

$$\begin{aligned} \min \;&\sum _{\begin{array}{c} i,j\in [n]\\ i<j \end{array}} w_{ij} {\tilde{d}}_{ij} \\ \text {s.t.}\;&(40)-(47)\\&{\tilde{d}}_{ij} \ge \tfrac{\ell _i-\ell _j}{2} + \sum _{k\in [n]{{\setminus }} \{i\}} \ell _k {\tilde{\alpha }}_{ki} - \sum _{k\in [n]{{\setminus }} \{j\}} \ell _k {\tilde{\alpha }}_{kj},&i,j\in [n], i<j,\\&{\tilde{d}}_{ij} \ge \tfrac{\ell _j-\ell _i}{2} + \sum _{k\in [n]{{\setminus }} \{j\}} \ell _k {\tilde{\alpha }}_{kj} - \sum _{k\in [n]{{\setminus }} \{i\}} \ell _k {\tilde{\alpha }}_{ki},&i,j\in [n], i<j. \end{aligned}$$

This model can be improved by using (48) and (49). Additionally, one could fix \({\tilde{\alpha }}_{{\hat{\imath }} {\hat{\jmath }}}\) to zero for one pair \({\hat{\imath }}, {\hat{\jmath }} \in [n], {\hat{\imath }} < {\hat{\jmath }}\). In our computational tests we added (48) from the beginning and did not use constraints (49) as suggested for the DRFLP in [69].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, A., Fischer, F. & Hungerländer, P. New exact approaches to row layout problems. Math. Prog. Comp. 11, 703–754 (2019). https://doi.org/10.1007/s12532-019-00162-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-019-00162-6

Keywords

Mathematics Subject Classification

Navigation