Skip to main content
Log in

Sperm dysfunction and ciliopathy

  • Review Article
  • Published:
Reproductive Medicine and Biology

Abstract

Sperm motility is driven by motile cytoskeletal elements in the tail, called axonemes. The structure of axonemes consists of 9 + 2 microtubules, molecular motors (dyneins), and their regulatory structures. Axonemes are well conserved in motile cilia and flagella through eukaryotic evolution. Deficiency in the axonemal structure causes defects in sperm motility, and often leads to male infertility. It has been known since the 1970s that, in some cases, male infertility is linked with other symptoms or diseases such as Kartagener syndrome. Given that these links are mostly caused by deficiencies in the common components of cilia and flagella, they are called “immotile cilia syndrome” or “primary ciliary dyskinesia,” or more recently, “ciliopathy,” which includes deficiencies in primary and sensory cilia. Here, we review the structure of the sperm flagellum and epithelial cilia in the human body, and discuss how male fertility is linked to ciliopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AK:

Adenylate kinase

ARMC:

Armadillo repeat containing

BB:

Basal body

BBS:

Bardet–Biedl syndrome

CEP:

Centrosomal protein

CCDC:

Coiled-coil domain-containing

CP:

Central pair apparatus

DC:

Docking complex

DNAAF:

Dynein axonemal assembly factor

DNAH:

Dynein, axonemal, heavy chain

DNAI:

Dynein, axonemal, intermediate chain

DNALI:

Dynein, axonemal, light intermediate chain

DYNC2:

Dynein, cytoplasmic 2

DYX1C1:

Dyslexia susceptibility 1 candidate 1

FAP:

Flagella-associated protein

FBB:

Flagellar basal body

FoxJ1:

Forkhead box J1

HC:

Heavy chain

HEATR:

HEAT-repeat containing

IC:

Intermediate chain

IAD:

Inner arm dynein

IDA:

Inner dynein arm

IFT:

Intraflagellar transport

IMT:

Intramanchette transport

Iqcg:

IQ motif containing G

LC:

Light chain

LRRC:

Leucine-rich repeat containing

MFN:

Mitofusin

MIA:

Modifier of inner arms

MKS:

McKusick–Kaufman syndrome

MNS1:

Meiosis-specific nuclear structural 1

N-DRC:

Nexin-dynein regulatory complex

NPHP:

Nephronophthisis

OAD:

Outer arm dynein

ODA:

Outer dynein arm

ODF:

Outer dense fiber

OFD:

Oral-facial-digital syndrome

PACRG:

Parkin co-regulated gene

PCD:

Primary ciliary dyskinesia

Pcdp1:

Primary ciliary dyskinesia protein 1

PCP:

Planar cell polarity

PF:

Paralyzed flagella

PIH:

Protein interacting with HSP90

PKD:

Polycystic kidney disease

RFX:

Regulatory factor X

RPGR:

Retinitis pigmentosa GTPase regulator

RS:

Radial spoke

SPAG:

Sperm-associated antigen

Spef2:

Sperm flagellar protein 2

TXNDC:

Thioredoxin domain containing

TZ:

Transition zone

VDAC3:

Voltage-dependent anion channel 3

XLRP:

X-linked retinitis pigmentosa

ZMYND:

Zinc-finger, MYND-type containing protein

References

  1. Camner P, Mossberg B, Afzelius BA. Evidence of congenitally nonfunctioning cilia in the tracheobronchial tract in two subjects. Am Rev Respir Dis. 1975;112:807–9.

    CAS  PubMed  Google Scholar 

  2. Afzelius BA. A human syndrome caused by immotile cilia. Science. 1976;193:317–9.

    Article  CAS  PubMed  Google Scholar 

  3. Afzelius BA. “Immotile-cilia” syndrome and ciliary abnormalities induced by infection and injury. Am Rev Respir Dis. 1981;124:107–9.

    CAS  PubMed  Google Scholar 

  4. Afzelius BA. Situs inversus and ciliary abnormalities. What is the connection? Int J Dev Biol. 1995;39:839–44.

    CAS  PubMed  Google Scholar 

  5. Afzelius BA. Cilia-related diseases. J Pathol. 2004;204:470–7.

    Article  CAS  PubMed  Google Scholar 

  6. Fawcett DW. The mammalian spermatozoon. Dev Biol. 1975;44:394–436.

    Article  CAS  PubMed  Google Scholar 

  7. Inaba K. Molecular architecture of the sperm flagella: molecules for motility and signaling. Zoolog Sci. 2003;20:1043–56.

    Article  CAS  PubMed  Google Scholar 

  8. Inaba K. Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol Hum Reprod. 2011;17:524–38.

    Article  CAS  PubMed  Google Scholar 

  9. Darszon A, Nishigaki T, Beltran C, Treviño CL. Calcium channels in the development, maturation, and function of spermatozoa. Physiol Rev. 2011;91:1305–55.

    Article  CAS  PubMed  Google Scholar 

  10. Gibbons IR. Cilia and flagella of eukaryotes. J Cell Biol. 1981;91:107s–24s.

    Article  CAS  PubMed  Google Scholar 

  11. Mohri H, Inaba K, Ishijima S, Baba SA. Tubulin–dynein system in flagellar and ciliary movement. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88:397–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Summers KE, Gibbons IR. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci USA. 1971;68:3092–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kamiya R. Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. Int Rev Cytol. 2002;219:115–55.

    Article  CAS  PubMed  Google Scholar 

  14. Smith EF, Sale WS. Regulation of dynein-driven microtubule sliding by the radial spokes in flagella. Science. 1992;257:1557–9.

    Article  CAS  PubMed  Google Scholar 

  15. Smith EF, Yang P. The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. Cell Motil Cytoskeleton. 2004;57:8–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kamiya R. Mutations at twelve independent loci result in absence of outer dynein arms in Chlamydomonas reinhardtii. J Cell Biol. 1988;107:2253–8.

    Article  CAS  PubMed  Google Scholar 

  17. Huang B, Piperno G, Luck DJ. Paralyzed flagella mutants of Chlamydomonas reinhardtii. Defective for axonemal doublet microtubule arms. J Biol Chem. 1979;254:3091–9.

    CAS  PubMed  Google Scholar 

  18. Gibbons BH, Gibbons IR. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J Cell Biol. 1972;54:75–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gibbons BH, Gibbons IR. The effect of partial extraction of dynein arms on the movement of reactivated sea-urchin sperm. J Cell Sci. 1973;13:337–57.

    CAS  PubMed  Google Scholar 

  20. Shingyoji C, Murakami A, Takahashi K. Local reactivation of Triton-extracted flagella by iontophoretic application of ATP. Nature. 1977;265:269–70.

    Article  CAS  PubMed  Google Scholar 

  21. Brokaw CJ. Direct measurements of sliding between outer doublet microtubules in swimming sperm flagella. Science. 1989;243:1593–6.

    Article  CAS  PubMed  Google Scholar 

  22. Okuno M, Brokaw CJ. Inhibition of movement of trition-demembranated sea-urchin sperm flagella by Mg2+, ATP4−, ADP and P1. J Cell Sci. 1979;38:105–23.

    CAS  PubMed  Google Scholar 

  23. Tang WJ, Bell CW, Sale WS, Gibbons IR. Structure of the dynein-1 outer arm in sea urchin sperm flagella. I. Analysis by separation of subunits. J Biol Chem. 1982;257:508–15.

    CAS  PubMed  Google Scholar 

  24. Ishijima S. Mechanical constraint converts planar waves into helices on tunicate and sea urchin sperm flagella. Cell Struct Funct. 2012;37:13–9.

    Article  CAS  PubMed  Google Scholar 

  25. King SM. The dynein microtubule motor. Biochim Biophys Acta. 2000;1496:60–75.

    Article  CAS  PubMed  Google Scholar 

  26. Gibbons IR, Gibbons BH, Mocz G, Asai DJ. Multiple nucleotide-binding sites in the sequence of dynein beta heavy chain. Nature. 1991;352:640–3.

    Article  CAS  PubMed  Google Scholar 

  27. Ogawa K. Four ATP-binding sites in the midregion of the β heavy chain of dynein. Nature. 1991;352:643–5.

    Article  CAS  PubMed  Google Scholar 

  28. Inaba K. Molecular basis of sperm flagellar axonemes: structural and evolutionary aspects. Ann N Y Acad Sci. 2007;1101:506–26.

    Article  CAS  PubMed  Google Scholar 

  29. Inaba K, Mizuno K, Shiba K. Structure, function, and phylogenetic consideration of calaxin. In: Sawada H, Inoue N, Iwano M, editors. Sexual reproduction in animals and plants. Springer: Berlin; 2014. p. 49–51.

    Chapter  Google Scholar 

  30. Ogawa K, Takai H, Ogiwara A, Yokota E, Shimizu T, Inaba K, et al. Is outer arm dynein intermediate chain 1 multifunctional? Mol Biol Cell. 1996;7:1895–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Padma P, Hozumi A, Ogawa K, Inaba K. Molecular cloning and characterization of a thioredoxin/nucleoside diphosphate kinase related dynein intermediate chain from the ascidian, Ciona intestinalis. Gene. 2001;275:177–83.

    Article  CAS  PubMed  Google Scholar 

  32. Sadek CM, Damdimopoulos AE, Pelto-Huikko M, Gustafsson JA, Spyrou G, Miranda-Vizuete A. Sptrx-2, a fusion protein composed of one thioredoxin and three tandemly repeated NDP-kinase domains is expressed in human testis germ cells. Genes Cells. 2001;6:1077–90.

    Article  CAS  PubMed  Google Scholar 

  33. Inaba K, Morisawa S, Morisawa M. Proteasomes regulate the motility of salmonid fish sperm through modulation of cAMP-dependent phosphorylation of an outer arm dynein light chain. J Cell Sci. 1998;111:1105–15.

    CAS  PubMed  Google Scholar 

  34. Inaba K, Kagami O, Ogawa K. Tctex2-related outer arm dynein light chain is phosphorylated at activation of sperm motility. Biochem Biophys Res Commun. 1999;256:177–83.

    Article  CAS  PubMed  Google Scholar 

  35. Mizuno K, Padma P, Konno A, Satouh Y, Ogawa K, Inaba K. A novel neuronal calcium sensor family protein, calaxin, is a potential Ca2+-dependent regulator for the outer arm dynein of metazoan cilia and flagella. Biol Cell. 2009;101:91–103.

    Article  CAS  PubMed  Google Scholar 

  36. Mizuno K, Shiba K, Okai M, Takahashi Y, Shitaka Y, Oiwa K, et al. Calaxin drives sperm chemotaxis by Ca2+-mediated direct modulation of a dynein motor. Proc Natl Acad Sci USA. 2012;109:20497–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Inaba K. Calcium sensors of ciliary outer arm dynein: functions and phylogenetic considerations for eukaryotic evolution. Cilia. 2015;4:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Takada S, Wilkerson CG, Wakabayashi K, Kamiya R, Witman GB. The outer dynein arm-docking complex: composition and characterization of a subunit (oda1) necessary for outer arm assembly. Mol Biol Cell. 2002;13:1015–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Owa M, Furuta A, Usukura J, Arisaka F, King SM, Witman GB, Kamiya R, Wakabayashi K. Cooperative binding of the outer arm-docking complex underlies the regular arrangement of outer arm dynein in the axoneme. Proc Natl Acad Sci USA. 2012;111:9461–6.

    Article  CAS  Google Scholar 

  40. Hozumi A, Satouh Y, Makino Y, Toda T, Ide H, Ogawa K, et al. Molecular characterization of Ciona sperm outer arm dynein reveals multiple components related to outer arm docking complex protein 2. Cell Motil Cytoskeleton. 2006;63:591–603.

    Article  CAS  PubMed  Google Scholar 

  41. Kamiya R, Yagi T. Functional diversity of axonemal dyneins as assessed by in vitro and in vivo motility assays of Chlamydomonas mutants. Zoolog Sci. 2014;31:633–44.

    Article  PubMed  CAS  Google Scholar 

  42. Wada S, Okuno M, Mohri H. Inner arm dynein ATPase fraction of sea urchin sperm flagella causes active sliding of axonemal outer doublet microtubule. Biochem Biophys Res Commun. 1991;175:173–8.

    Article  CAS  PubMed  Google Scholar 

  43. Yokota E, Mabuchi I. Isolation and characterization of a novel dynein that contains C and A heavy chains from sea urchin sperm flagellar axonemes. J Cell Sci. 1994;107:345–51.

    CAS  PubMed  Google Scholar 

  44. Hozumi A, Padma P, Toda T, Ide H, Inaba K. Molecular characterization of axonemal proteins and signaling molecules responsible for chemoattractant-induced sperm activation in Ciona intestinalis. Cell Motil Cytoskeleton. 2008;65:249–67.

    Article  CAS  PubMed  Google Scholar 

  45. Huang B, Ramanis Z, Luck DJ. Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for flagellar function. Cell. 1982;28:115–24.

    Article  CAS  PubMed  Google Scholar 

  46. Gardner LC, O’Toole E, Perrone CA, Giddings T, Porter ME. Components of a “dynein regulatory complex” are located at the junction between the radial spokes and the dynein arms in Chlamydomonas flagella. J Cell Biol. 1994;127:1311–25.

    Article  CAS  PubMed  Google Scholar 

  47. Downing KH, Sui H. Structural insights into microtubule doublet interactions in axonemes. Curr Opin Struct Biol. 2007;17:253–9.

    Article  CAS  PubMed  Google Scholar 

  48. Heuser T, Raytchev M, Krell J, Porter ME, Nicastro D. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol. 2009;187:921–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bui KH, Sakakibara H, Movassagh T, Oiwa K, Ishikawa T. Asymmetry of inner dynein arms and inter-doublet links in Chlamydomonas flagella. J Cell Biol. 2009;186:437–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mitchell DR, Sale WS. Characterization of a Chlamydomonas insertional mutant that disrupts flagellar central pair microtubule-associated structures. J Cell Biol. 1999;144:293–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nicastro D, Fu X, Heuser T, Tso A, Porter ME, Linck RW. Cryo-electron tomography reveals conserved features of doublet microtubules in flagella. Proc Natl Acad Sci USA. 2011;108:E845–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hoops HJ, Witman GB. Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella. J Cell Biol. 1983;97:902–8.

    Article  CAS  PubMed  Google Scholar 

  53. Mukai C, Okuno M. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol Reprod. 2004;71:540–7.

    Article  CAS  PubMed  Google Scholar 

  54. Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, et al. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci USA. 2004;101:16501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Anderson RG. The three-dimensional structure of the basal body from the rhesus monkey oviduct. J Cell Biol. 1972;54:246–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bornens M. Organelle positioning and cell polarity. Nat Rev Mol Cell Biol. 2008;9:874–86.

    Article  CAS  PubMed  Google Scholar 

  57. Boisvieux-Ulrich E, Sandoz D. Determination of ciliary polarity precedes differentiation in the epithelial cells of quail oviduct. Biol Cell. 1991;72:3–14.

    Article  CAS  PubMed  Google Scholar 

  58. Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peränen J, Merdes A, et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell. 2007;129:1201–13.

    Article  CAS  PubMed  Google Scholar 

  59. Donaldson JG, Jackson CL. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol. 2011;12:362–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kozminski KG, Beech PL, Rosenbaum JL. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J Cell Biol. 1995;131:1517–27.

    Article  CAS  PubMed  Google Scholar 

  61. Rosenbaum JL, Witman GB. Intraflagellar transport. Nat Rev Mol Cell Biol. 2002;3:813–25.

    Article  CAS  PubMed  Google Scholar 

  62. Sarpal R, Todi SV, Sivan-Loukianova E, Shirolikar S, Subramanian N, Raff EC, et al. Drosophila KAP interacts with the kinesin II motor subunit KLP64D to assemble chordotonal sensory cilia, but not sperm tails. Curr Biol. 2003;13:1687–96.

    Article  CAS  PubMed  Google Scholar 

  63. Han YG, Kwok BH, Kernan MJ. Intraflagellar transport is required in Drosophila to differentiate sensory cilia but not sperm. Curr Biol. 2003;13:1679–86.

    Article  CAS  PubMed  Google Scholar 

  64. Manandhar G, Sutovsky P, Joshi HC, Stearns T, Schatten G. Centrosome reduction during mouse spermiogenesis. Dev Biol. 1998;203:424–34.

    Article  CAS  PubMed  Google Scholar 

  65. Manandhar G, Simerly C, Schatten G. Highly degenerated distal centrioles in rhesus and human spermatozoa. Hum Reprod. 2000;15:256–63.

    Article  CAS  PubMed  Google Scholar 

  66. Fawcett DW, Phillips DM. The fine structure and development of the neck region of the mammalian spermatozoon. Anat Rec. 1969;165:153–64.

    Article  CAS  PubMed  Google Scholar 

  67. Konno A, Shiba K, Cai C, Inaba K. Branchial cilia and sperm flagella recruit distinct axonemal components. PLoS One. 2015;10:e0126005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Li X, Xu L, Li J, Li B, Bai X, Strauss JF 3rd, et al. Otitis media in sperm-associated antigen 6 (Spag6)-deficient mice. PLoS One. 2014;9:e112879.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Dabdoub A, Kelley MW. Planar cell polarity and a potential role for a Wnt morphogen gradient in stereociliary bundle orientation in the mammalian inner ear. J Neurobiol. 2005;64:446–57.

    Article  CAS  PubMed  Google Scholar 

  70. Sobkowicz HM, Slapnick SM, August BK. The kinocilium of auditory hair cells and evidence for its morphogenetic role during the regeneration of stereocilia and cuticular plates. J Neurocytol. 1995;24:633–53.

    Article  CAS  PubMed  Google Scholar 

  71. Kikuchi T, Takasaka T, Tonosaki A, Watanabe H. Fine structure of guinea pig vestibular kinocilium. Acta Otolaryngol. 1989;108:26–30.

    Article  CAS  PubMed  Google Scholar 

  72. Sobrinho-Simões M, Johannessen JV. Scanning electron microscopy of the normal human thyroid. J Submicrosc Cytol. 1981;13:209–22.

    PubMed  Google Scholar 

  73. Martin A, Hedinger C, Häberlin-Jakob M, Walt H. Structure and motility of primary cilia in the follicular epithelium of the human thyroid. Virchows Arch B Cell Pathol Incl Mol Pathol. 1988;55:159–66.

    CAS  PubMed  Google Scholar 

  74. Robaire B, Hinton BT, Orgebin-Crist MC. The epididymis. In: Neill JD, editor. Knobil and Neill’s physiology of reproduction. 3rd ed. Elsevier: Amsterdam; 2006. p. 1071–148.

    Chapter  Google Scholar 

  75. Kormanko M, Reijonen K. Microvascular structure of human epididymis. Am J Anat. 1976;145:23–32.

    Article  Google Scholar 

  76. Paniagua R, Regadera J, Nistal M, Abaurrea MA. Histological, histochemical and ultrastructural variations along the length of the human vas deferens before and after puberty. Acta Anat. 1982;111:190–203.

    Article  CAS  PubMed  Google Scholar 

  77. Hando T, Okada DM, Zamboni L. Atypical cilia in human endometrium. J Cell Biol. 1968;39:475–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Denholm RB, More IA. Atypical cilia of the human endometrial epithelium. J Anat. 1980;131:309–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Eliyahu S, Shalev E. A fertile woman with Kartagener’s syndrome and three consecutive pregnancies. Hum Reprod. 1996;11:683.

    Article  CAS  PubMed  Google Scholar 

  80. Singla V, Reiter JF. The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science. 2006;313:629–33.

    Article  CAS  PubMed  Google Scholar 

  81. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, et al. Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell. 1998;95:829–37.

    Article  CAS  PubMed  Google Scholar 

  82. Takeda S, Yonekawa Y, Tanaka Y, Okada Y, Nonaka S, Hirokawa N. Left–right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A−/− mice analysis. J Cell Biol. 1999;145:825–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Marshall WF, Nonaka S. Cilia: tuning into the cell’s antenna. Curr Biol. 2006;16:R604–14.

    Article  CAS  PubMed  Google Scholar 

  84. Hirokawa N, Tanaka Y, Okada Y, Takeda S. Nodal flow and the generation of left–right asymmetry. Cell. 2006;125:33–45.

    Article  CAS  PubMed  Google Scholar 

  85. Shinohara K, Kawasumi A, Takamatsu A, Yoshiba S, Botilde Y, Motoyama N, et al. Two rotating cilia in the node cavity are sufficient to break left–right symmetry in the mouse embryo. Nat Commun. 2012;3:622.

    Article  PubMed  CAS  Google Scholar 

  86. McGrath J, Somlo S, Makova S, Tian X, Brueckner M. Two populations of node monocilia initiate left–right asymmetry in the mouse. Cell. 2003;114:61–73.

    Article  CAS  PubMed  Google Scholar 

  87. Babu D, Roy S. Left–right asymmetry: cilia stir up new surprises in the node. Open Biol. 2013;3:130052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Bangs FK, Schrode N, Hadjantonakis AK, Anderson KV. Lineage specificity of primary cilia in the mouse embryo. Nat Cell Biol. 2015;17:113–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Slough J, Cooney L, Brueckner M. Monocilia in the embryonic mouse heart suggest a direct role for cilia in cardiac morphogenesis. Dev Dyn. 2008;237:2304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Thomas J, Morlé L, Soulavie F, Laurençon A, Sagnol S, Durand B. Transcriptional control of genes involved in ciliogenesis: a first step in making cilia. Biol Cell. 2010;102:499–513.

    Article  CAS  PubMed  Google Scholar 

  91. Reiter JF, Blacque OE, Leroux MR. The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep. 2012;13:608–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tobin JL, Beales PL. The nonmotile ciliopathies. Genet Med. 2009;11:386–402.

    Article  CAS  PubMed  Google Scholar 

  93. Zaghloul NA, Katsanis N. Mechanistic insights into Bardet–Biedl syndrome, a model ciliopathy. J Clin Invest. 2009;119:428–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Norris DP, Grimes DT. Mouse models of ciliopathies: the state of the art. Dis Model Mech. 2012;5:299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mykytyn K, Mullins RF, Andrews M, Chiang AP, Swiderski RE, Yang B, et al. Bardet–Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc Natl Acad Sci USA. 2004;101:8664–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sun Z, Amsterdam A, Pazour GJ, Cole DG, Miller MS, Hopkins N. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development. 2004;131:4085–93.

    Article  CAS  PubMed  Google Scholar 

  97. Gorivodsky M, Mukhopadhyay M, Wilsch-Braeuninger M, Phillips M, Teufel A, Kim C, et al. Intraflagellar transport protein 172 is essential for primary cilia formation and plays a vital role in patterning the mammalian brain. Dev Biol. 2009;325:24–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Murcia NS, Richards WG, Yoder BK, Mucenski ML, Dunlap JR, Woychik RP. The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left–right axis determination. Development. 2000;127:2347–55.

    CAS  PubMed  Google Scholar 

  99. Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol. 2000;151:709–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Iomini C, Babaev-Khaimov V, Sassaroli M, Piperno G. Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases. J Cell Biol. 2001;153:13–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Iomini C, Li L, Esparza JM, Dutcher SK. Retrograde intraflagellar transport mutants identify complex A proteins with multiple genetic interactions in Chlamydomonas reinhardtii. Genetics. 2009;183:885–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liem KF Jr, Ashe A, He M, Satir P, Moran J, Beier D, et al. The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking. J Cell Biol. 2012;197:789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mill P, Lockhart PJ, Fitzpatrick E, Mountford HS, Hall EA, Reijns MA, et al. Human and mouse mutations in WDR35 cause short-rib polydactyly syndromes due to abnormal ciliogenesis. Am J Hum Genet. 2011;88:508–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Perrault I, Saunier S, Hanein S, Filhol E, Bizet AA, Collins F, et al. Mainzer–Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am J Hum Genet. 2012;90:864–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Byers B, Goetsch L. A highly ordered ring of membrane-associated filaments in budding yeast. J Cell Biol. 1976;69:717–21.

    Article  CAS  PubMed  Google Scholar 

  106. Bezanilla M, Gladfelter AS, Kovar DR, Lee WL. Cytoskeletal dynamics: a view from the membrane. J Cell Biol. 2015;209:329–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET, et al. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science. 2010;329:436–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ihara M, Kinoshita A, Yamada S, Tanaka H, Tanigaki A, Kitano A, et al. Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell. 2005;8:343–52.

    Article  CAS  PubMed  Google Scholar 

  109. Kissel H, Georgescu MM, Larisch S, Manova K, Hunnicutt GR, Steller H. The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell. 2005;8:353–64.

    Article  CAS  PubMed  Google Scholar 

  110. Kuo YC, Lin YH, Chen HI, Wang YY, Chiou YW, Lin HH, et al. SEPT12 mutations cause male infertility with defective sperm annulus. Hum Mutat. 2012;33:710–9.

    Article  CAS  PubMed  Google Scholar 

  111. Craige B, Tsao CC, Diener DR, Hou Y, Lechtreck KF, Rosenbaum JL, Witman GB. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol. 2010;190:927–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Baala L, Audollent S, Martinovic J, Ozilou C, Babron MC, Sivanandamoorthy S, et al. Pleiotropic effects of CEP290 (NPHP6) mutations extend to Meckel syndrome. Am J Hum Genet. 2007;81:170–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ishikawa H, Kubo A, Tsukita S, Tsukita S. Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nat Cell Biol. 2005;7:517–24.

    Article  CAS  PubMed  Google Scholar 

  114. Delgehyr N, Sillibourne J, Bornens M. Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J Cell Sci. 2005;118:1565–75.

    Article  CAS  PubMed  Google Scholar 

  115. Singla V, Romaguera-Ros M, Garcia-Verdugo JM, Reiter JF. Ofd1, a human disease gene, regulates the length and distal structure of centrioles. Dev Cell. 2010;18:410–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sillibourne JE, Specht CG, Izeddin I, Hurbain I, Tran P, Triller A, et al. Assessing the localization of centrosomal proteins by PALM/STORM nanoscopy. Cytoskeleton. 2011;68:619–27.

    Article  CAS  PubMed  Google Scholar 

  117. Kunimoto K, Yamazaki Y, Nishida E, Shinohara K, Ishikawa H, Hasegawa T, et al. Coordinated ciliary beating requires Odf2-mediated polarization of basal bodies via basal feet. Cell. 2012;148:189–200.

    Article  CAS  PubMed  Google Scholar 

  118. Salmon NA, Reijo Pera RA, Xu EY. A gene trap knockout of the abundant sperm tail protein, outer dense fiber 2, results in preimplantation lethality. Genesis. 2006;44:515–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shao X, Tarnasky HA, Schalles U, Oko R, van der Hoorn FA. Interactional cloning of the 84-kDa major outer dense fiber protein Odf84. Leucine zippers mediate associations of Odf84 and Odf27. J Biol Chem. 1997;272:6105–13.

    Article  CAS  PubMed  Google Scholar 

  120. Tarnasky H, Cheng M, Ou Y, Thundathil JC, Oko R, van der Hoorn FA. Gene trap mutation of murine Outer dense fiber protein-2 gene can result in sperm tail abnormalities in mice with high percentage chimaerism. BMC Dev Biol. 2010;10:67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Lechtreck KF, Melkonian M. Striated microtubule-associated fibers: identification of assemblin, a novel 34-kD protein that forms paracrystals of 2-nm filaments in vitro. J Cell Biol. 1991;115:705–16.

    Article  CAS  PubMed  Google Scholar 

  122. Yang J, Liu X, Yue G, Adamian M, Bulgakov O, Li T. Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet. J Cell Biol. 2002;159:431–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gilliam JC, Chang JT, Sandoval IM, Zhang Y, Li T, Pittler SJ, Chiu W, et al. Three-dimensional architecture of the rod sensory cilium and its disruption in retinal neurodegeneration. Cell. 2012;151:1029–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Roosing S, Rohrschneider K, Beryozkin A, Sharon D, Weisschuh N, Staller J, et al. Mutations in RAB28, encoding a farnesylated small GTPase, are associated with autosomal-recessive cone-rod dystrophy. Am J Hum Genet. 2013;93:110–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature. 2008;456:611–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Duquesnoy P, Escudier E, Vincensini L, Freshour J, Bridoux AM, Coste A, et al. Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia. Am J Hum Genet. 2009;85:890–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Loges NT, Olbrich H, Becker-Heck A, Häffner K, Heer A, Reinhard C, et al. Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am J Hum Genet. 2009;85:883–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mitchison HM, Schmidts M, Loges NT, Freshour J, Dritsoula A, Hirst RA, et al. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat Genet. 2012;44:381–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tarkar A, Loges NT, Slagle CE, Francis R, Dougherty GW, Tamayo JV, et al. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet. 2013;45:995–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Horani A, Druley TE, Zariwala MA, Patel AC, Levinson BT, Van Arendonk LG, et al. Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am J Hum Genet. 2012;91:685–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kott E, Legendre M, Copin B, Papon JF, Dastot-Le Moal F, Montantin G, et al. Loss-of-function mutations in RSPH1 cause primary ciliary dyskinesia with central-complex and radial-spoke defects. Am J Hum Genet. 2013;93:561–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Moore A, Escudier E, Roger G, Tamalet A, Pelosse B, Marlin S, et al. RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet. 2006;43:326–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zariwala MA, Gee HY, Kurkowiak M, Al-Mutairi DA, Leigh MW, Hurd TW, et al. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am J Hum Genet. 2013;93:336–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Knowles MR, Ostrowski LE, Loges NT, Hurd T, Leigh MW, Huang L, et al. Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am J Hum Genet. 2013;93:711–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yamamoto R, Hirono M, Kamiya R. Discrete PIH proteins function in the cytoplasmic preassembly of different subsets of axonemal dyneins. J Cell Biol. 2010;190:65–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yamamoto R, Song K, Yanagisawa HA, Fox L, Yagi T, Wirschell M, et al. The MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility. J Cell Biol. 2013;201:263–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Olbrich H, Schmidts M, Werner C, Onoufriadis A, Loges NT, Raidt J, et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left–right body asymmetry. Am J Hum Genet. 2012;91:672–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Castleman VH, Romio L, Chodhari R, Hirst RA, de Castro SC, Parker KA, et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am J Hum Genet. 2009;84:197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Papon JF, Coste A, Roudot-Thoraval F, Boucherat M, Roger G, Tamalet A, et al. A 20-year experience of electron microscopy in the diagnosis of primary ciliary dyskinesia. Eur Respir J. 2010;35:1057–63.

    Article  CAS  PubMed  Google Scholar 

  140. Shoemark A, Dixon M, Corrin B, Dewar A. Twenty-year review of quantitative transmission electron microscopy for the diagnosis of primary ciliary dyskinesia. J Clin Pathol. 2012;65:267–71.

    Article  CAS  PubMed  Google Scholar 

  141. Wolf JP, Feneux D, Escalier D, Rodrigues D, Frydman R, Jouannet P. Pregnancy after subzonal insemination with spermatozoa lacking outer dynein arms. J Reprod Fertil. 1993;97:487–92.

    Article  CAS  PubMed  Google Scholar 

  142. Rompolas P, Patel-King RS, King SM. An outer arm dynein conformational switch is required for metachronal synchrony of motile cilia in planaria. Mol Biol Cell. 2010;21:3669–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Neesen J, Kirschner R, Ochs M, Schmiedl A, Habermann B, Mueller C, et al. Disruption of an inner arm dynein heavy chain gene results in asthenozoospermia and reduced ciliary beat frequency. Hum Mol Genet. 2001;10:1117–28.

    Article  CAS  PubMed  Google Scholar 

  144. Shoemark A, Ives A, Becker-Heck A, Burgoyne T, Dixon M, Bilton D, et al. Inner dynein arm defects in primary ciliary dyskinesia. J Genet Syndr Gene Ther. 2013;4:7.

    Article  CAS  Google Scholar 

  145. Kobayashi Y, Watanabe M, Okada Y, Sawa H, Takai H, Nakanishi M, et al. Hydrocephalus, situs inversus, chronic sinusitis, and male infertility in DNA polymerase lambda-deficient mice: possible implication for the pathogenesis of immotile cilia syndrome. Mol Cell Biol. 2002;22:2769–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zariwala M, O’Neal WK, Noone PG, Leigh MW, Knowles MR, Ostrowski LE. Investigation of the possible role of a novel gene, DPCD, in primary ciliary dyskinesia. Am J Respir Cell Mol Biol. 2004;30:428–34.

    Article  CAS  PubMed  Google Scholar 

  147. Fliegauf M, Olbrich H, Horvath J, Wildhaber JH, Xariwala MA, Kennedy M, et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med. 2005;171:1343–9.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Supp DM, Witte DP, Potter SS, Brueckner M. Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice. Nature. 1997;389:963–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bartoloni L, Blouin JL, Pan Y, Gehrig C, Maiti AK, Scamuffa N, et al. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci USA. 2002;99:10282–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Schwabe GC, Hoffmann K, Loges NT, Birker D, Rossier C, de Santi MM, et al. Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. Hum Mutat. 2008;29:289–98.

    Article  CAS  PubMed  Google Scholar 

  151. Inaba K. Regulatory subunits of axonemal dynein. In: Hirose K, Amos LA, editors. Handbook of dynein. Singapore: Pan Stanford; 2011. p. 304–24.

    Google Scholar 

  152. Ushimaru Y, Konno A, Kaizu M, Ogawa K, Satoh N, Inaba K. Association of a 66 kDa homolog of Chlamydomonas DC2, a subunit of the outer arm docking complex, with outer arm dynein of sperm flagella in the ascidian Ciona intestinalis. Zoolog Sci. 2006;23:679–87.

    Article  CAS  PubMed  Google Scholar 

  153. Onoufriadis A, Paff T, Antony D, Shoemark A, Micha D, Kuyt B, et al. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am J Hum Genet. 2013;92:88–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Satouh Y, Inaba K. Proteomic characterization of sperm radial spokes identifies a novel spoke protein with an ubiquitin domain. FEBS Lett. 2009;583:2201–7.

    Article  CAS  PubMed  Google Scholar 

  155. Wirschell M, Pazour G, Yoda A, Hirono M, Kamiya R, Witman GB. Oda5p, a novel axonemal protein required for assembly of the outer dynein arm and an associated adenylate kinase. Mol Biol Cell. 2004;15:2729–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Dean AB, Mitchell DR. Chlamydomonas ODA10 is a conserved axonemal protein that plays a unique role in outer dynein arm assembly. Mol Biol Cell. 2013;24:3689–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Desai PB, Freshour JR, Mitchell DR. Chlamydomonas axonemal dynein assembly locus ODA8 encodes a conserved flagellar protein needed for cytoplasmic maturation of outer dynein arm complexes. Cytoskeleton. 2015;72:16–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ahmed NT, Mitchell DR. ODA16p, a Chlamydomonas flagellar protein needed for dynein assembly. Mol Biol Cell. 2005;16:5004–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ahmed NT, Gao C, Lucker BF, Cole DG, Mitchell DR. ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery. J Cell Biol. 2008;183:313–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hjeij R, Lindstrand A, Francis R, Zariwala MA, Liu X, Li Y, et al. ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry. Am J Hum Genet. 2013;93:357–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Panizzi JR, Becker-Heck A, Castleman VH, Al-Mutairi DA, Liu Y, Loges NT, et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet. 2012;44:714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. King SM, Patel-King RS. The oligomeric outer dynein arm assembly factor CCDC103 is tightly integrated within the ciliary axoneme and exhibits periodic binding to microtubules. J Biol Chem. 2015;290:7388–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Austin-Tse C, Halbritter J, Zariwala MA, Gilberti RM, Gee HY, Hellman N, et al. Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia. Am J Hum Genet. 2013;93:672–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sale WS. The axonemal axis and Ca2+-induced asymmetry of active microtubule sliding in sea urchin sperm tails. J Cell Biol. 1986;102:2042–52.

    Article  CAS  PubMed  Google Scholar 

  165. Nakano I, Kobayashi T, Yoshimura M, Shingyoji C. Central-pair-linked regulation of microtubule sliding by calcium in flagellar axonemes. J Cell Sci. 2003;116:1627–36.

    Article  CAS  PubMed  Google Scholar 

  166. Piperno G, Mead K, Shestak W. The inner dynein arms I2 interact with a “dynein regulatory complex” in Chlamydomonas flagella. J Cell Biol. 1992;118:1455–63.

    Article  CAS  PubMed  Google Scholar 

  167. Merveille AC, Davis EE, Becker-Heck A, Legendre M, Amirav I, Bataille G, et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet. 2011;43:72–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Becker-Heck A, Zohn IE, Okabe N, Pollock A, Lenhart KB, Sullivan-Brown J, et al. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left–right axis formation. Nat Genet. 2011;43:79–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wirschell M, Olbrich H, Werner C, Tritschler D, Bower R, Sale WS, et al. The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet. 2013;45:262–8.

    Article  CAS  PubMed  Google Scholar 

  170. Budny B, Chen W, Omran H, Fliegauf M, Tzschach A, Wisniewska M, et al. A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum Genet. 2006;120:171–8.

    Article  CAS  PubMed  Google Scholar 

  171. Bennett WI, Gall AM, Southard JL, Sidman RL. Abnormal spermiogenesis in quaking, a myelin-deficient mutant mouse. Biol Reprod. 1971;5:30–58.

    CAS  PubMed  Google Scholar 

  172. Lorenzetti D, Bishop CE, Justice MJ. Deletion of the Parkin coregulated gene causes male sterility in the quakingviable mouse mutant. Proc Natl Acad Sci USA. 2004;101:8402–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Dawe HR, Farr H, Portman N, Shaw MK, Gull K. The Parkin co-regulated gene product, PACRG, is an evolutionarily conserved axonemal protein that functions in outer-doublet microtubule morphogenesis. J Cell Sci. 2005;118:5421–30.

    Article  CAS  PubMed  Google Scholar 

  174. Ikeda K, Ikeda T, Morikawa K, Kamiya R. Axonemal localization of Chlamydomonas PACRG, a homologue of the human Parkin-coregulated gene product. Cell Motil Cytoskeleton. 2007;64:814–21.

    Article  CAS  PubMed  Google Scholar 

  175. Zhang Z, Kostetskii I, Tang W, Haig-Ladewig L, Sapiro R, Wei Z, et al. Deficiency of SPAG16L causes male infertility associated with impaired sperm motility. Biol Reprod. 2006;74:751–9.

    Article  CAS  PubMed  Google Scholar 

  176. Zhang Z, Shen X, Gude DR, Wilkinson BM, Justice MJ, Flickinger CJ, et al. MEIG1 is essential for spermiogenesis in mice. Proc Natl Acad Sci USA. 2009;106:17055–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Salzberg Y, Eldar T, Karminsky OD, Itach SB, Pietrokovski S, Don J. Meig1 deficiency causes a severe defect in mouse spermatogenesis. Dev Biol. 2010;338:158–67.

    Article  CAS  PubMed  Google Scholar 

  178. Teves ME, Jha KN, Song J, Nagarkatti-Gude DR, Herr JC, Foster JA, et al. Germ cell-specific disruption of the Meig1 gene causes impaired spermiogenesis in mice. Andrology. 2013;1:37–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Li W, Tang W, Teves ME, Zhang Z, Zhang L, Li H, et al. A MEIG1/PACRG complex in the manchette is essential for building the sperm flagella. Development. 2015;142:921–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kierszenbaum AL. Spermatid manchette: plugging proteins to zero into the sperm tail. Mol Reprod Dev. 2001;59:347–9.

    Article  CAS  PubMed  Google Scholar 

  181. Pan Q, Zhu YJ, Gu BW, Cai X, Bai XT, Yun HY, et al. A new fusion gene NUP98-IQCG identified in an acute T-lymphoid/myeloid leukemia with a t(3;11)(q29q13;p15)del(3)(q29) translocation. Oncogene. 2008;27:3414–23.

    Article  CAS  PubMed  Google Scholar 

  182. Li RK, Tan JL, Chen LT, Feng JS, Liang WX, Guo XJ, et al. Iqcg is essential for sperm flagellum formation in mice. PLoS One. 2014;9:e98053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Lee L, Campagna DR, Pinkus JL, Mulhern H, Wyatt TA, Sisson JH, et al. Primary ciliary dyskinesia in mice lacking the novel ciliary protein Pcdp1. Mol Cell Biol. 2008;28:949–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. DiPetrillo CG, Smith EF. Pcdp1 is a central apparatus protein that binds Ca2+-calmodulin and regulates ciliary motility. J Cell Biol. 2010;189:601–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sironen A, Hansen J, Thomsen B, Andersson M, Vilkki J, Toppari J, Kotaja N. Expression of SPEF2 during mouse spermatogenesis and identification of IFT20 as an interacting protein. Biol Reprod. 2010;82:580–90.

    Article  CAS  PubMed  Google Scholar 

  186. Zhang H, Mitchell DR. Cpc1, a Chlamydomonas central pair protein with an adenylate kinase domain. J Cell Sci. 2004;117:4179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Dong F, Shinohara K, Botilde Y, Nabeshima R, Asai Y, Fukumoto A, et al. Pih1d3 is required for cytoplasmic preassembly of axonemal dynein in mouse sperm. J Cell Biol. 2014;204:203–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Tokuyasu KT. Dynamics of spermiogenesis in Drosophila melanogaster: 3. Relation between axoneme and mitochondrial derivatives. Exp Cell Res. 1974;84:239–50.

    Article  CAS  PubMed  Google Scholar 

  189. Otani H, Tanaka O, Kasai K, Yoshioka T. Development of mitochondrial helical sheath in the middle piece of the mouse spermatid tail: regular dispositions and synchronized changes. Anat Rec. 1988;222:26–33.

    Article  CAS  PubMed  Google Scholar 

  190. Ho HC, Wey S. Three dimensional rendering of the mitochondrial sheath morphogenesis during mouse spermiogenesis. Microsc Res Tech. 2007;70:719–23.

    Article  PubMed  Google Scholar 

  191. Bach D, Pich S, Soriano FX, Vega N, Baumgartner B, Oriola J, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. J Biol Chem. 2003;278:17190–7.

    Article  CAS  PubMed  Google Scholar 

  192. Hales KG, Fuller MT. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell. 1997;90:121–9.

    Article  CAS  PubMed  Google Scholar 

  193. Vadnais ML, Lin AM, Gerton GL. Mitochondrial fusion protein MFN2 interacts with the mitostatin-related protein MNS1 required for mouse sperm flagellar structure and function. Cilia. 2014;3:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Zhou J, Yang F, Leu NA, Wang PJ. MNS1 is essential for spermiogenesis and motile ciliary functions in mice. PLoS Genet. 2012;8:e1002516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Sampson MJ, Ross L, Decker WK, Craigen WJ. A novel isoform of the mitochondrial outer membrane protein VDAC3 via alternative splicing of a 3-base exon. Functional characteristics and subcellular localization. J Biol Chem. 1998;273:30482–6.

    Article  CAS  PubMed  Google Scholar 

  196. Pedersen H, Mygind N. Absence of axonemal arms in nasal mucosa cilia in Kartagener’s syndrome. Nature. 1976;262:494–5.

    Article  CAS  PubMed  Google Scholar 

  197. Bleau G, Richer C-L, Bousquet D. Absence of dynein arms in cilia of endocervical cells in a fertile woman. Fertil Steril. 1978;30:362–3.

    CAS  PubMed  Google Scholar 

  198. Jean Y, Langlais J, Roberts KD, Chapdelaine A, Bleau G. Fertility of a woman with nonfunctional ciliated cells in the Fallopian tubes. Fertil Steril. 1979;31:349–50.

    CAS  PubMed  Google Scholar 

  199. Escudier E, Escalier D, Homasson J-P, Pinchon MC, Bernaudin JF. Unexpectedly normal cilia and normal spermatozoa in an infertile man with Kartagener’s syndrome. Eur J Respir Dis. 1987;70:180–3.

    CAS  PubMed  Google Scholar 

  200. Olbrich H, Haffner K, Kispert A, Volkel A, Volz A, Sasmaz G, et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left–right asymmetry. Nat Genet. 2002;30:143–4.

    Article  CAS  PubMed  Google Scholar 

  201. Supp DM, Witte DP, Potter SS, Brueckner M. Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice. Nature. 1997;389:963–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhang YJ, O’Neal WK, Randell SH, Blackburn K, Moyer MB, Boucher RC, et al. Identification of dynein heavy chain 7 as an inner arm component of human cilia that is synthesized but not assembled in a case of primary ciliary dyskinesia. J Biol Chem. 2002;277:17906–15.

    Article  CAS  PubMed  Google Scholar 

  203. Pennarun G, Escudier E, Chapelin C, Bridoux AM, Cacheux V, Roger G, et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet. 1999; 65:1508–19..

  204. Loges NT, Olbrich H, Fenske L, Mussaffi H, Horvath J, Fliegauf M, et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am J Hum Genet. 2008;83:547–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Mazor M, Alkrinawi S, Chalifa-Caspi V, Manor E, Sheffield VC, Aviram M, et al. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am J Hum Genet. 2011;88:599–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Duriez B, Duquesnoy P, Escudier E, Bridoux AM, Escalier D, Rayet I, et al. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc Natl Acad Sci USA. 2007;104:3336–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Rashid S, Grzmil P, Drenckhahn JD, Meinhardt A, Adham I, Engel W, et al. Disruption of the murine dynein light chain gene Tcte3–3 results in asthenozoospermia. Reproduction. 2010;139:99–111.

    Article  CAS  PubMed  Google Scholar 

  208. Hjeij R, Onoufriadis A, Watson CM, Slagle CE, Klena NT, Dougherty GW, et al. CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation. Am J Hum Genet. 2014;95:257–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Lechtreck KF, Witman GB. Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility. J Cell Biol. 2007;176:473–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Sapiro R, Kostetskii I, Olds-Clarke P, Gerton GL, Radice GL, Strauss IJ. Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol Cell Biol. 2002;22:6298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Teves ME, Zhang Z, Costanzo RM, Henderson SC, Corwin FD, Zweit J, et al. Sperm-associated antigen-17 gene is essential for motile cilia function and neonatal survival. Am J Respir Cell Mol Biol. 2013;48:765–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Fernandez-Gonzalez A, Kourembanas S, Wyatt TA, Mitsialis SA. Mutation of murine adenylate kinase 7 underlies a primary ciliary dyskinesia phenotype. Am J Respir Cell Mol Biol. 2009;40:305–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Takaki E, Fujimoto M, Nakahari T, Yonemura S, Miyata Y, Hayashida N, et al. Heat shock transcription factor 1 is required for maintenance of ciliary beating in mice. J Biol Chem. 2007;282:37285–92.

    Article  CAS  PubMed  Google Scholar 

  214. Tanaka H, Iguchi N, Toyama Y, Kitamura K, Takahashi T, Kaseda K, et al. Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function. Mol Cell Biol. 2004;24:7958–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Horani A, Ferkol TW, Shoseyov D, Wasserman MG, Oren YS, Kerem B, et al. LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects. PLoS One. 2013;8:e59436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Moore DJ, Onoufriadis A, Shoemark A, Simpson MA, zur Lage PI, de Castro SC, et al. Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. Am J Hum Genet. 2013;93:346–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Yanagisawa H, Kamiya R. A Tektin homologue is decreased in Chlamydomonas mutants lacking an axonemal inner-arm dynein. Mol Biol Cell. 2004;15:2105–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-aid #15H01201 for Scientific Research on Innovative Areas and #22370023 for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT). Studies with marine invertebrates cited in this paper were supported by the members of the Onagawa Field Research Center, Tohoku University; International Coastal Research Center, AORI, The University of Tokyo; and staff of the National Bioresource Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Inaba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human/animal studies

This article does not contain any studies with human or animal subjects performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inaba, K., Mizuno, K. Sperm dysfunction and ciliopathy. Reprod Med Biol 15, 77–94 (2016). https://doi.org/10.1007/s12522-015-0225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12522-015-0225-5

Keywords

Navigation