Skip to main content
Log in

Composition and Ceramic Properties of Carbonate-Bearing: Illitic Clays from North-Eastern Tunisia

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Aptian clays of Jebel Ressas (north-east of Tunisia) have been studied for their use in ceramic industry. At first, mineralogical, chemical, physical, and thermal analyses of these clays are given. Indeed, illite is the main mineral (60–65 wt%) but other minerals; quartz, kaolinite, interstratified illite/smectite, calcite and feldspar, are present in small quantities. Next, this study reveals that the average amounts of silica and potassium are 51.57 and 3.35 wt%, respectively. The percentage of potassium is also quite high, suggesting the presence of illite. The amount of alumina is in average of 19.01 wt%. The contents of lime and iron vary between 5 and 8 wt%. The grain size data indicate a silt-dominated assemblage. The plasticity test shows a medium value (PI= 16–20 wt%). The firing shrinkage and the expansion are limited. The absence of expansible minerals in these clays explains why the plasticity and the linear shrinkage are limited. Finally, two mixtures M1 and M2 prepared from these clays show that ceramic properties respect the norm and the industrial tests confirm that these clays could be used in manufacturing of bricks and earthenware tiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben M’Barek, M.; Srasra, E.; Zargouni, F.: Characterization of Paleocene clays in the North West of Tunisia and their use in the field of ceramics. Afr. Geosci. Rev. 9, 107–117 (2002) (in French)

  2. El Hechi, A.: Mineralogical and physico-chemical study of the Upper Cretaceous—Paleogene clays of Grombalia, Zaghouan, and Enfidha. Thesis, Faculty of Sciences of Tunisia, pp. 205 (2004) (in French)

  3. Mahmoudi, S.; Srasra, E.; Zargouni, F.: The use of Tunisian Barremian clay in the traditional ceramic industry: optimization of ceramic properties. Appl. Clay Sci. 42, 125–129 (2008)

    Article  Google Scholar 

  4. Mahmoudi, S.; Srasra, E.; Zargouni, F.: Firing behaviour of the lower cretaceous clays of Tunisia. J. Afr. Earth Sci. 58, 235–241 (2010)

    Article  Google Scholar 

  5. Elkhazri, A.; Razgah, S.; Abdallah, H.; Ben Haj Ali, N.: The Barremo-Aptian anoxic event “OAE 1a” in north eastern Tunisia: interest foraminifera. Rev. Paleobiol. 28, 93–130 (2009) (in French)

  6. Turki, M.M.: Polykinematic and sediment control associated with the Zaghouan-Nabhana fautl. In: Review of Earth Sciences. Edition of the National Institute of Scientific and Technical Research of Tunis, Tunisia, p. 252 (in French) (1988)

  7. Grim, R.E.: Applied Clay Mineralogy, McGraw-Hill, New York, p. 422 (1962)

  8. Srodon, J.: X-ray diffraction of randomly interstratified illite smectite in mixtures with discrete. Clay Miner. 16, 297–304 (1981)

    Article  Google Scholar 

  9. Proust, C.; Jullien, A.; Forestier, L.: Determination of Atterberg limits by dynamic gravimetry. Comptes Rendus Geosci. 336, 1233–1238 (2004) (in French)

  10. Modesto, C.; Bernardin, A.M.: Determination of clay plasticity: indentation method versus Pfefferkorn method. Appl. Clay Sci. 40, 15–19 (2008)

    Article  Google Scholar 

  11. Carretero, M.I.; Dondi, M.; Fabbri, B.; Raimondo, M.: The influence of shaping and firing technology on ceramic properties of calcareous and non-calcareous illitic–chloritic clays. Appl. Clay Sci. 20, 301–306 (2002)

    Article  Google Scholar 

  12. Ferrari, S.; Gualteri, A.F.: The use of illitic the production stoneware tile ceramics. Appl. Clay Sci. 32, 73–81 (2006)

    Article  Google Scholar 

  13. Sedmale, G.; Sperberga, I.; Sedmalis, U.; Valancius, Z.: Formation of high-temperature crystalline phases in ceramic from illite clay and dolomite. J. Eur. Ceram. Soc. 26, 3351–3355 (2006)

    Article  Google Scholar 

  14. Wattanasiriwech, D.; Srijan, K.; Wattanasiriwech, S.: Vitrification of illitic clay from Malaysia. Appl. Clay Sci. 43, 57–62 (2009)

    Article  Google Scholar 

  15. Fiori, C.; Fabbri, B.; Donati, F.; Venturi, I.: Mineralogical composition of the clay bodies used in the Italian tile industry. Appl. Clay Sci. 4, 461–473 (1989)

    Article  Google Scholar 

  16. Bain, A.J.: Composition and properties of clay used in various fields of ceramics. Part II. Ceram. Forum Int. 63, 44–84 (1987)

    Google Scholar 

  17. Kreimeyer, R.: Some notes on the firing colour of clay bricks. Appl. Clay Sci. 2, 175–183 (1987)

    Article  Google Scholar 

  18. Baccour, H.; Medhioub, M.; Jamoussi, F.; Mhiri, T.; Daoud, A.: Mineralogical evaluation and industrial applications of the Triassic clay deposits, Southern Tunisia. Mater. Charact. 59, 1613–1622 (2008)

    Article  Google Scholar 

  19. Baccour, H.; Medhioub, M.; Jamoussi, F.; Mhiri, T.: Influence of firing temperature on the ceramic properties of Triassic clays from Tunisia. J. Mater.Process. Technol. 209, 2812–2817 (2009)

    Article  Google Scholar 

  20. Hajjaji, W.; Moussi, B.; Hachani, M.; Medhioub, M.; Lopez-Galindo, A.; Rocha, F.; Labrincha, J.A.; Jamoussi, F.: The potential use of Tithonian–Barremian detrital deposits from central Tunisia as raw materials for ceramic tiles and pigments. Appl. Clay Sci. 48, 552–560 (2010)

    Article  Google Scholar 

  21. Shepard, F.P.: Nomenclature based on sand–silt–clay ratios. J. Sediment. Petrol. 24, 151–158 (1954)

    Google Scholar 

  22. Mc Manus, J.: Grain size distribution and interpretation. In: Tucker, M.E. (ed.) Techniques in Sedimentology. Blackwell, Oxford, pp. 63–85 (1988)

  23. Winkler, H.G.F.: Bedeutung der Korngrossenverteilungund des Mineral-bestandes von Tonen fiirdie Herstellung grobkerarnischer Erzeugnisse. Ber. DKG 31, 337–343 (1954)

    Google Scholar 

  24. Holtz, X.; Kovacs, X.: Kansas geotechnical survey. The relationship between geology and landslide hazards of Atchison. Kansas and Vicinity. Curr. Res. Earth Sci. 3, 244 (1981)

    Google Scholar 

  25. Van der Merwe, D.H.: Prediction of heave from the plasticity index and percentage of clay fraction of soils. Trans. S. Afr. Inst. Civil Eng. 6, 103–107 (1964)

    Google Scholar 

  26. Bain, J.A.; Highly, D.E.: Regional appraisal of clay resources: challenge to the clay mineralogist. In: Mortland, M.M.; Faxmer, V.C. (Eds.) Proceedings of the International Clay Conference, Elsevier, Amsterdam, pp. 437–446 (1978)

  27. Baran, B.; Erturk, T.; Sarikaya, Y.; Alembaroglu, T.: Workability test method for metals applied to examine a workability measure (plastic limit) for clays. Appl. Clay Sci. 20, 53–63 (2001)

    Article  Google Scholar 

  28. Kara, A.; Stevens, R.:Characterization of biscuit fired bone China body microstructure. Part I: XRD and SEM of crystalline phases. J. Eur. Ceram. Soc. 22, 731–736 (2002)

    Google Scholar 

  29. Milheiro, F.A.C.; Freire, M.N.; Silva, A.G.P.; Holanda, J.N.F.: Densification behavior of a red firing Brazilian kaolinitic clay. Ceram. Int. 31, 757–763 (2005)

    Article  Google Scholar 

  30. Martin-Marques, J.; Rincon, J.Ma.; Romero, M.: Effect of firig temperature on the sintering of porcelain stoneware tiles. Ceram. Int. 34, 1867–1873 (2008)

    Article  Google Scholar 

  31. Alcântara, A.C.S.; Beltrão, M.S.S.; Oliveira, H.A.; Gimenez, I.F.; Barreto, L.S.: Characterization of ceramic tiles prepared from two clays from Sergipe—Brazil. Appl. Clay Sci. 39, 160–165 (2008)

    Article  Google Scholar 

  32. Assal, H.H.; El-Didamony, H.; Ramez, M.; Mossalamy, F.H.: The role of lime inclusions on the properties of fired clay articles. Ind. Ceram. 19, 82–92 (1999)

    Google Scholar 

  33. Cizeron, G.: Dilatometric analysis. Ceram. Ind. 795, 405–408 (1985)

    Google Scholar 

  34. Fabri, B.; Fiori, C.: Clays and complementary raw materials for stoneware tiles. Miner. Petrogr. Acta 29, 535–545 (1985)

    Google Scholar 

  35. Hollerl, N.; Venturi, V.; Gatti, F.: Calcium carbonate in extruded products. Ceram. World 2, 34–39 (1996)

    Google Scholar 

  36. Parras, J.; Sanchez-Jimenez, C.; Rodas, M.; Luque, F.G.: Ceramic application of Middle Ordovician shales from central Spain. Appl. Clay Sci. 11, 25–41 (1996)

    Article  Google Scholar 

  37. Gallala, W.; Gaied, M.E.M.: Montacer: detrital mode, mineralogy and geochemistry of the Sidi Aïch Formation (Early Cretaceous) in central and southwestern Tunisia: implications for provenance, tectonic setting and paleoenvironment. J. Afr. Earth Sci. 53, 159–170 (2009)

  38. Darweesh, H.: Building materials from siliceous clay and low grade dolomite rocks. Ceram. Int. 27, 45–50 (2001)

    Article  Google Scholar 

  39. Jordán, M.M.; Almendro, M.B.; Romero, M.; Rincón, J.M.: Application of sewage sludge in the manufacturing of ceramic tile bodies. Appl. Clay Sci. 30, 219–224 (2006)

    Article  Google Scholar 

  40. Sanchez Soto, P.J.;Dıaz-Hernandez, J.L.; Raigon-Pichardo, M.; Ruız-Conde, A.; Garcıa-Ramos, G.: Ceramic properties of a Spanish clay containing illite, chlorite and quartz. Br. Ceram. Trans. 93, 196–201 (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Mahmoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, S., Srasra, E. & Zargouni, F. Composition and Ceramic Properties of Carbonate-Bearing: Illitic Clays from North-Eastern Tunisia. Arab J Sci Eng 39, 5729–5737 (2014). https://doi.org/10.1007/s13369-014-1145-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1145-0

Keywords

Navigation