Skip to main content
Log in

Estimating and mapping evapotranspiration in olive groves of semi-arid Tunisia using empirical formulas and satellite remote sensing

  • 3rd CAJG 2020
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Accurate estimation of evapotranspiration (ET) is needed to optimize irrigation in semi-arid environments. The present work aims to estimate evapotranspiration using empirical formulas and remote sensing in a commercial olive orchard near Menzel Mhiri in east central Tunisia. This study compares evapotranspiration with the Mapping Evapotranspiration at high Resolution with Internal Calibration (METRIC) model with estimates from five empirical equations (Penman–Monteith; Blaney-Criddle; Hargreaves temperature; Hargreaves radiation; and Priestley-Taylor). Reference evapotranspiration estimated using these five empirical equations was based on meteorological station measurements in olives at the pilot study site. Three years of ET estimates based on Landsat-8 satellite images and the METRIC method covering 2017, 2018, and 2019 were downloaded using Google EEFlux.

The results obtained by remote sensing showed good ability to characterize seasonal variation in reference (ET0) and actual crop (ETc) evapotranspiration. Reference evapotranspiration values for olive trees estimated by the METRIC model during the three experimental years accurately represent those estimated with the Penman–Monteith formula. Also, there was very good agreement between results obtained with METRIC and those calculated using the Blaney-Criddle method. The monthly average of ET0 and ETc values determined during the three experimental years (2017, 2018, and 2019) showed that the METRIC model underestimates irrigation needs by about 15% compared to the Penman–Monteith (PM) approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alcaras MA, Peter CR, Searles S (2021) Yield and water productivity response of olive trees (cv Manzanilla) to post-harvest deficit irrigation in a non-Mediterranean climate. Agri Water Manag J 245:106562

    Article  Google Scholar 

  • Amazirh A, Re-Raki S, Chehbouni A, Rivalland V, Diarra A, Khabba S, Essahar J, Merlin O (2017) Modified Penman-Monteith equation for monitoring evapotranspiration of wheat crop: relationship between the surface resistance and remotely sensed stress index. Biosys Eng J 164:68–84

    Article  Google Scholar 

  • Alexandris S, Stricevic R, Petkovic S (2008) Comparative analysis of reference evapotranspiration from the surface of rainfed grass in Central Serbia, calculated by six empirical methods against the Penman-Monteith formula. Eur Water 21(22):17–28

    Google Scholar 

  • Allen R, Pereira L, Raes D, Smith M (1998) Crop Evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage, Paper 56. Food and Agriculture Organization of the United Nations, Rome, 300 p

  • Allen RG, Tasumi M, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Irrig Drain Eng J 133:380–394

    Article  Google Scholar 

  • Allen RG, Morton C, Kamble B, Kilic A, Huntington J, Thau D (2015) EEFlux: a Landsat-based evapotranspiration mapping tool on the Google Earth Engine. In: 2015 ASABE/IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation-A Tribute to the Career of Terry Howell, Sr. Conference Proceedings (pp. 1–11). Am Soc Agric Biol Eng

  • Bchir A (2015) Etude de l’évapotranspiration et de la transpiration pour l’estimation des besoins en eau de l’olivier (Olea europaea L.) conduit en intensif dans différents étages bioclimatiques. Chott-Mariem: Institut Supérieur Agronomique de Chott- Mariem, 2015. (Thèse de doctorat en Sciences Agronomiques)

  • Bchir A, Lemeur R, Ben Meriem F, Boukherissa N, Gariani W, Sbaii H, Ben Dhiab A, Ben Mansour Gueddes S, Braham M (2019a) Estimation and comparaison of reference evapotranspiration using different methods to determine olive trees irrigation schedule in different bioclimatic stages of Tunisia. Braz J Bio Sci 6(14):615–628

    Article  Google Scholar 

  • Bchir A, Mulla DJ, Ben Dhiab A, Ben Meriem F, Bousetta W, Braham. M (2019) Assessing spatial and temporal variability in evapotranspiration for olive orchards in Tunisia using satellite remote sensing. In: (J. V. Stafford, ed.) Precision Agriculture 19. pp: 431 – 436

  • Blaney HF, Criddle WD (1950) Determining water requirements in irrigated areas from climatologically and irrigation data. USDA, Washington

    Google Scholar 

  • Blaney HF, Criddle WD (1962) Determining consumptive use and irrigation water requirements. USDA Technical Bulletin 1275. US Department of Agriclture

  • Bois B, Pieri P, Van Leeuwen C, Wald L, Huard F, Gaudillere J-P, Saur E (2007) Using remotely sensed solar radiation data for reference evapotranspiration estimation at a daily time step. Agr Forest Meterol J 148:619–630

    Article  Google Scholar 

  • Bouhlassa S, Paré S (2006) Évapotranspiration de référence dans la région aride de Tafilalet au sud-est du Maroc. Afri J Environ Assess Manag 11:1–16

    Google Scholar 

  • Chebbi W, Boulet G, Dantec V, Lili Chabaane Z, Fanise P, Mougenot B, Ayri H (2018) Analysis of evapotranspiration components of a rainfed olive orchard during three contrasting years in a semi-arid climate. Agr Forest Meteorol J 256–257

  • Elnmer A, Khadr M, Kanae S, Tawfik A (2019) Mapping daily and seasonally evapotranspiration using remote sensing techniques over the Nile delta. Agr Water Manag 213:682–692

  • Elsayed-Farag S (2014) Irrigation scheduling from plant-based measurements in hedgerow olive orchards. University of Seville, pp: 218

  • Fernández JE (2017) Plant-based methods for irrigation scheduling of woody crops. Horti 3:35. https://doi.org/10.3390/horticulturae3020035

    Article  Google Scholar 

  • Fernández JE, Moreno F, Martín-Palomo MJ, Cuevas MV, Torres-Ruiz JM, Moriana A (2011) Combining sap flow and trunk diameter measurements to assess water needs in mature olive orchards. Environ Exp Bot 72:330–338

    Article  Google Scholar 

  • Fernández JE, Perez-Martin A, Torres-Ruiz JM, Cuevas MV, Rodriguez-Dominguez CM, Elsayed-Farag S, Morales-Sillero A, García JM, Hernandez-Santana V, Diaz-Espejo A (2013) A regulated deficit irrigation strategy for hedgerow olive orchards with high plant density. Plant Soil 372:279–295

    Article  Google Scholar 

  • Fernández JE, Diaz-Espejo A, Romero R, Hernandez-Santana V, García JM, Padilla-Díaz CM, Cuevas MV (2018) Chapter 9 - Precision Irrigation in Olive (Olea europaea L.) Tree Orchards. Water scarcity and sustainable agriculture in semi-arid environment. Tools, Strategies, and Challenges for Woody Crops. 179–217

  • Fluente-Saiz D, Ortega-Farias S, Fonseca D, Ortega-Salazar S, Kilic A, Allen R (2017) Calibrated of METRIC model to estimate energy balance over a drip-irrigated Apple Orchard. Remote Sens J 9:670–678

    Article  Google Scholar 

  • Fooladmand HR, Ahmadi SH (2009) Monthly spatial calibration of Blaneye Criddle equation for calculating monthly ET0 in south of Iran. Irrig Drain J 58(2):234–245

    Article  Google Scholar 

  • French A, Hunsaker D, Thorp K (2015) Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models. Remote Sens Environ J 158:281–294

    Article  Google Scholar 

  • Hargreaves GH, Asce F, Allen G (2003) History end evaluation of Hargreaves evapotranspiration equation. Irrig Drain Eng J 129(1):53–63

    Article  Google Scholar 

  • Hernandez-Santana V, Fernández JE, Rodriguez-Dominguez CM, Romeroa R, Diaz-Espejo A (2016) The dynamics of radial sap flux density reflects changes in stomatal conductance in response to soil and air-water deficit. Agri for Meteorol 218–219:92–101

    Article  Google Scholar 

  • Irmak A, Allen RG, Kjaersgaard J, Huntington J, Kamble B, Trezza R, Ratcliffe I (2012) Operational remote sensing of ET and challenges, evapotranspiration - remote sensing and modeling, Dr. Ayse Irmak (Ed.), ISBN: 978–953–307–808–3, InTech, Available from: http://www.intechopen.com/books/evapotranspiration-remote-sensing-and-modeling/operational-remotesensing-of-et-and-challenges. Accessed 14 Sep 2021

  • Jabloun M, Sahli A (2008) Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data. Application to Tunisia. Agr Water Manag J 95(6):707–715

    Article  Google Scholar 

  • Khoshravesh M, Gholami Sefidkouhi MA, Valipour M (2017) Estimation of reference evapotranspiration using multivariate fractional polynomial, Bayesian regression, and robust regression models in three arid environments. Appl Water Sci 7:1911–1922

    Article  Google Scholar 

  • Landeras G, Bekoe E, Ampofo J, Logah F, Diop M, Cisse M, Shiri J (2018) New alternatives for reference evapotranspiration estimation in West Africa using limited weather data and ancillary data supply strategies. Theor Appl Climatol 132:701–716

    Article  Google Scholar 

  • Lian J, Huang M (2016) Comparison of three remote sensing based models to estimate evapotranspiration in an oasis desert region. Agr Water Manag J 165:153–162

    Article  Google Scholar 

  • López Bernal Á, García Tejera O, Vega VA, Hidalgo JC, Testi L, Orgaz F, Villalobos FJ (2015) Using sap flow measurements to estimate net assimilation in olive trees under different irrigation regimes. Irrig Sci 33:357–366

    Article  Google Scholar 

  • Maeda E, Wibreg D, Pellikka P (2011) Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya. Appl Geogr 31:251–258

    Article  Google Scholar 

  • Martinez CJ, Thepadia M (2010) Estimating reference evapotranspiration with minimum data in Florida. Irrig Drain Eng 136:494–501

    Article  Google Scholar 

  • Ma Y, Liua S, Song L, Xua Z, Liud Y, Xua T, Zhu Z (2018) Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sens Environ J 216:715–734

    Article  Google Scholar 

  • Mahmoud S, Gan T (2019) Irrigation water management in arid regions of Middle East: assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorlogical data. Agr Water Manag J 212:35–47

  • Masmoudi-Charfi C, Habaieb H (2014) Rainfall distribution functions for irrigation scheduling: calculation procedures following site of olive (Olea europaea L.) cultivation and growing periods. Amer J Plant Sci 5:2094–2133

    Article  Google Scholar 

  • Melaouhi A, Baraza E, Escalona J, El-Aououad H, Mahjoub I, Bchir A, Braham M, Bota J (2021) Physiological and biochemical responses to water deficit and recovery of two olive cultivars (Olea europaea L., Arbequina and Empeltre cvs) under Mediterranean conditions. Theor Exper Plant Physiol J. https://doi.org/10.1007/s40626-021-00219-9

  • M’nassri S, Dridi L, Schäfer G, Hachicha M, Majdoub R (2019) Groundwater salinity in a semi-arid region of centrak eastern Tunisia: insights from multivariate statistical techniques and geostatistican modelling. Environ Earth Sci J 78:288

    Article  Google Scholar 

  • Nyenjie P, Batelaan O (2009) Estimating the efects of climate change on groundwater recharge and basefow in the upper Ssezibwa catchment. Ugenda Hydrol Sci J 54(4):713–726

    Article  Google Scholar 

  • Numata I, Khand K, Kjaersgaard J, Cochrane MA, Silva SS (2017) Evaluation of Landsat-based METRIC modeling to provide high-spatial resolution evapotranspiration estimates for Amazonian forests. Remote Sens 9(1):46

    Article  Google Scholar 

  • Paredes P, Rodrigues GC (2010) Necessidades de água para a rega de milho em Portugal Continental considerando condições de seca. In: Pereira LS, Mexia JT, Pires CAL (eds) Gestão do risco em secas: métodos, tecnologias e desafíos. Colibri e CEER, Lisboa, pp 301–320

  • Paredes P, Pereira LS, Almorox J, Darouich H (2020) Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables. Agr Water Manag J. 240:106210

    Article  Google Scholar 

  • Ortega-Salazar S, Ortega-Farias S, Kilic A, Allen R (2021) Performance of the METRIC model for mapping energy balance components and actual evapotranspiration over a super intensive drip-irrigated olive orchard. Agr Water Manag J 251:106861

    Article  Google Scholar 

  • Pereira LS, Paredes P, Jovanovic N (2020) Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach. Agr Water Manag J 241(1):106357

    Article  Google Scholar 

  • Pôças I, Paço TA, Cunha M, Andrade JA, Silvestre J, Sousa A, Santos FL, Pereira LS, Allen RG (2014) Satellite-based evapotranspiration of a super-intensive olive orchard: application of METRIC algorithms. Biosyst Eng 128:69–81

    Article  Google Scholar 

  • Popova Z, Kercheva M, Pereira LS (2006) Validation of the FAO methodology for computing ET0 with missing climatic data. Appl South Bulgaria Irri Drain 55:201–215. https://doi.org/10.1002/ird.228

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Razieia T, Pereira LS (2013) Reference estimation of ET0 with Hargreaves-Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agr Water Manag 121:1–18. https://doi.org/10.1016/j.agwat.2012.12.019

    Article  Google Scholar 

  • Saadi S (2018) Spatial estimation of actual evapotranspiration and irrigation volumes using water and energy balance models forced by optical remote sensing data (VIS / NIR/ TIR). PhD Thesis, Université de Toulouse France. P. 294

  • Sumner D, Jacobs JM (2005) Utility of Penman-Monteith, Priestley –Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration. Hydrol J 308:81–104

    Article  Google Scholar 

  • Tabari H (2010) Evaluation of reference crop evapotranspiration equations in various climates. Water Res Manag 24:2311–2337

    Article  Google Scholar 

  • Tasumi M (2019) Estimating evapotranspiration using METRIC model and Landsat data for better understandings of regional hydrology in the western Urmia Lake Basin. Agr Water Manag. 226:105805

    Article  Google Scholar 

  • Temesgen B, Eching S, Davidoff B, Frame K (2005) Comparison of some reference evapotranspiration equations for California. Irrig Drain Eng 13:73–84. https://doi.org/10.1061/(ASCE)0733-9437

    Article  Google Scholar 

  • Todorovic M, Karic B, Pereira LS (2013) Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates. Hydrol J 481:166–176. https://doi.org/10.1016/j.jhydrol.2012.12.034

    Article  Google Scholar 

  • Valipour M (2017) Analysis of potential evapotranspiration using limited weather data. Appl Water Sci 7:187–197. https://doi.org/10.1007/s13201-014-0234-2

    Article  Google Scholar 

  • Wrachien DD, Mambretti S (2015) Irrigation and drainage systems in flood-prone areas: The role of mathematical models. Austin J Irrig 1(1):1002

    Google Scholar 

  • Xue J, Balic K, Light S, Hessels T, Kisekka I (2020) Evaluation of remote sensing-based evapotranspiration models against surface renewal in almonds, tomatoes and maize. Agr Water Manag J 238:106228

    Article  Google Scholar 

  • Xiaoying L, Erda L (2005) Performance of the Priestley-Taylor equation in the semiarid climate of North China. Agr Water Manag J 71(1):1–17. https://doi.org/10.1016/j.agwat.2004.07.007

    Article  Google Scholar 

  • Yannopoulos SI, Lyberatos G, Theodossiou N, Li W, Valipour M, Tamburrino A, Angelakis AN (2015) Evolution of water lifting devices (pumps) over the centuries worldwide. Water 7(9):5031–5060. https://doi.org/10.3390/w7095031

    Article  Google Scholar 

Download references

Funding

This project was funded by the International Center for Biosaline Agriculture (ICBA) and the Civilian Research Development Foundation (CRDF Global) (JRCAFS-23425).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amani Bchir.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Biswajeet Pradhan

This paper was selected from the 3rd Conference of the Arabian Journal of Geosciences (CAJG), Tunisia 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bchir, A., M’nassri, S., Dhib, S. et al. Estimating and mapping evapotranspiration in olive groves of semi-arid Tunisia using empirical formulas and satellite remote sensing. Arab J Geosci 14, 2717 (2021). https://doi.org/10.1007/s12517-021-08860-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-08860-z

Keywords

Navigation