Skip to main content

Advertisement

Log in

Actual evapotranspiration estimation using METRIC model and Landsat satellite images over an irrigated field in the Eastern Mediterranean Region of Turkey

  • Original Paper
  • Published:
Mediterranean Geoscience Reviews Aims and scope Submit manuscript

Abstract

Actual evapotranspiration (ETa) estimates at regional and river basin scales can assist water authorities with water allocation decisions in agriculture and the ecosystem. Remote sensing is cutting-edge technology as well as a robust tool for generating spatiotemporal variation of energy balance components over large areas. The objectives of this study were to: (a) estimate and generate fully distributed ETa maps by the “Mapping Evapo Transpiration at high Resolution with Internalized Calibration” (METRIC) in the Akarsu Irrigation Area (A = 9495 ha) in the Eastern Mediterranean Region of Turkey, (b) compare ETa estimations with crop evapotranspiration (ETc) series acquired by FAO-56 methodology, i.e., “two-step approach” and (c) investigate the correlation between Kc obtained by the METRIC model and Normalized Difference Vegetation Index (NDVI) for some specific crop types. Landsat satellite imagery data with 30 m by 30 m spatial resolution and meteorological data of two ground stations (L8 and Adana) were used to estimate daily and monthly ETa by the METRIC model in the winter and summer seasons of 2020. Results showed acceptable agreement between ETa and ETc estimations. ETa maps reflected the changes in parallel with crop type variations over the study area in the summer and winter seasons of 2020. A strong and moderate correlation was found between Kc acquired by METRIC (ETrF) and NDVI (r = 0.91 for Peanut1 and r = 0.55 for Corn1) in the summer season. Research results led us to conclude that remote sensing technologies could be applied to quantify the spatiotemporal dynamics of surface energy balance variables for irrigation and non-irrigation seasons. Moreover, ETa estimation by the METRIC model could be used over large-scale irrigation schemes in realizing rational irrigation scheduling efficiently and managing agricultural water more effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data is available on request from the authors.

References

  • Aksu H, Arikan A (2017) Satellite-based estimation of actual evapotranspiration in the Buyuk Menders Bain Turkey. Hydrology 48(2):559–570. https://doi.org/10.2166/nh.2016.226

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56. FAO, Rome

    Google Scholar 

  • Allen R, Tasumi M, Morse A, Trezza R, Wright JL, Bastiaanssen W, Kramber W, Lorite L, Robison CW (2007a) Satellite-based energy balance for mapping evapotranspiration with internalized calibration, METRIC (applications). J Irrig Drain Eng 133:395–406

    Article  Google Scholar 

  • Allen RG, Tasumi M, Trezza R (2007b) Satellite-based energy balance for mapping evapotranspiration with internalized calibration, METRIC (model). J Irrig Drain Eng 133:380–394

    Article  Google Scholar 

  • Allen R, Irmak A, Trezza R, Hendrickx JMH, Bastiaanssen WGM, Kjaersgaard J (2011) Satellite-based ET estimation in agricultural using SEBAL and METRIC. Hydrol Process 25:4011–4027. https://doi.org/10.1002/hyp.8408

    Article  Google Scholar 

  • Allen RG, Trezza R, Kilic A, Tasumi M, Hongjun L (2013) Sensitivity of landsat-scale energy balance to aerodynamic variability in mountains and complex Terrain. JAWRA J Am Water Resour Assoc 49(3):592–604. https://doi.org/10.1111/jawr.12055

    Article  Google Scholar 

  • Alsenjar O, Cetin M, Aksu, H, Akgul, MA, Golpinar MS (2023) Cropping pattern classification using artificial neural networks and evapotranspiration estimation in the Eastern Mediterranean region of Turkey. J Agric Sci (Tarim Bilimleri Dergisi) 29(2):X–X. https://doi.org/10.15832/ankutbd.1174645 (In Press)

  • Anderson MC, Allen RG, Morse A, Kustas WP (2012) Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens Environ 122:50–65

    Article  Google Scholar 

  • Awada H, Di Prima S, Sirca C, Giadrossich F, Marras S, Spano D, Pirastru M (2022) A remote sensing and modeling integrated approach for constructing continuous time series of daily actual evapotranspiration. Agric Water Manag 260:107320

    Article  Google Scholar 

  • Bastiaanssen WGM (1995) Regionalization of surface flux densities and moisture indicators in composite terrain: a remote sensing approach under clear skies in Mediterranean climates. Ph.D. Thesis, CIP Data Koninklijke Bibliotheek, Den Haag, The Netherlands

  • Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM (1998a) A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formul J Hydrol 212–213:198–212

    Article  Google Scholar 

  • Bastiaanssen WGM, Pelgrum H, Wang J, Ma Y, Moreno JF, Roerink GJ, van der Wal T (1998b) A surface energy balance algorithm for land (SEBAL): 2. Validation. J Hydrol 212–213:213–229

    Article  Google Scholar 

  • Biggs TW, Marshall M, Messina A (2016) Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison. Water Resour Res 52:7311–7326. https://doi.org/10.1002/2016WR019107

    Article  Google Scholar 

  • Cetin M, Kaman H, Kirda C, Sesveren S (2020) Analysis of irrigation performance in water resources planning and management: a case study. Fresenius Environ Bull (FEB) 29(5):3409–3414

    Google Scholar 

  • Cetin M, Alsenjar O, Aksu H, Golpinar MS, Akgul MA (2023) Estimation of crop water stress index and leaf area index based on remote sensing data 2023. Water Supply 00:1. https://doi.org/10.2166/ws.2023.051

    Article  Google Scholar 

  • Consoli S, Barbagallo S (2012) Estimating water requirements of an irrigated Mediterranean vineyard using a satellite-based approach. J Irrig Drain Eng 138(10):896–904

    Article  Google Scholar 

  • Consoli S, Vanella D (2014) Mapping crop evapotranspiration by integrating vegetation indices into a soil water balance model. Agric Water Manag 143:71–81

    Article  Google Scholar 

  • Cragoa R, Brutsaert W (1996) Daytime evaporation and the self-preservation of the evaporative fraction and the Bowen ratio. J Hydrol 178(1–4):241–255. https://doi.org/10.1016/0022-1694(95)02803-X

    Article  Google Scholar 

  • Delogu E, Olioso A, Alliès A, Demarty J, Boulet G (2021) Evaluation of multiple methods for the production of continuous evapotranspiration estimates from TIR remote sensing. Remote Sens 13(6):1086

    Article  Google Scholar 

  • El-shirbeny MA, Ali AM, Badr MA, Bauomy EM (2015) Assessment of wheat crop coefficient using remote sensing techniques. Academia. https://doi.org/10.13140/RG.2.1.1673.0325

    Article  Google Scholar 

  • French AN, Hunsaker DJ, Sanchez CA, Saber M, Gonzalez JR, Anderson R (2020) Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest. Agric Water Manag 239:106266. https://doi.org/10.1016/j.agwat.2020.106266

    Article  Google Scholar 

  • Gharbia SS, Smullen T, Gill L, Johnston P, Pilla F (2018) Spatially distributed potential evapotranspiration modeling and climate projections. Sci Tot Environ 633:571–592. https://doi.org/10.1016/j.scitotenv.2018.03.208

    Article  Google Scholar 

  • Hoedjes JCB, Chehbouni A, Jacob F, Ezzahar J, Boulet G (2008) Deriving daily evapotranspiration from re-motely sensed instantaneous evaporative fraction over olive orchard in semi-arid Morocco. J Hydrol 354:53–64. https://doi.org/10.1016/j.jhydrol.2008.02.016

    Article  Google Scholar 

  • Ibrikci H, Cetin M, Karnez E, Flügel WA, Tilkici B, Bulbul Y, Ryan J (2015) Irrigation-induced nitrate losses assessed in a Mediterranean irrigation district. Agric Water Manag 148(3):223–231. https://doi.org/10.1016/j.agwat.2014.10.007

    Article  Google Scholar 

  • López-Urrea R, Olalla FMDS, Montoro A, López-Fuster P (2009) Single and dual crop coefficients and water requirements for onion (Allium cepa L.) under semiarid conditions. Agric Water Manag 96(6):1031–1036

    Article  Google Scholar 

  • Madugundu R, Al-gaadi KA, Tola E, Hassaballa AA (2017) Performance of the METRIC model in estimating evapotranspiration fluxes over an irrigated field in Saudi Arabia using Landsat-8 images. Hydrol Earth Syst Sci 21:6135–6151

    Article  Google Scholar 

  • Mkhwanazi M, Chávez JL (2012) Mapping evapotranspiration with the remote sensing ET algorithms METRIC and SEBAL under advective and non-advective conditions: accuracy determination with weighing lysimeter. Hydrology Days. https://doi.org/10.25675/10217/201029

  • Olmedo GF, Ortega-farias S, Fonseca-luengo D (2016) Tools and functions to estimate actual evapotranspiration using land water: tools and functions to estimate actual evapotranspiration using land surface energy balance models. R J. https://doi.org/10.32614/RJ-2016-051

    Article  Google Scholar 

  • Ortega-Farías SO, Cuenca RH, English M (1995) Hourly grass evapotranspiration in modified maritime environment. J Irrig Drain Eng 121(6):369–373. https://doi.org/10.1061/(ASCE)0733-9437121:6(369)

    Article  Google Scholar 

  • Oudin L, Hervieu F, Michel C, Perrin C, Andréassian V, Anctil F, Loumagne C (2005) Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2 - Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. J Hydrol 303(1–4):290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026

    Article  Google Scholar 

  • Ozcan H, Cetin M, Diker K (2003) Monitoring and assessment of land use status by gis. Environ Monit Assess 87:33–45

    Article  Google Scholar 

  • Paço T, Ferreira MI, Conceição N (2006) Peach orchard evapotranspiration in a sandy soil: comparison between eddy covariance measurements and estimates by the FAO 56 approach. Agric Water Manag 85(3):305–313. https://doi.org/10.1016/j.agwat.2006.05.014

    Article  Google Scholar 

  • Parent AC, Anctil F (2012) Quantifying evapotranspiration of a rainfed potato crop in South-eastern Canada using eddy covariance techniques. Agric Water Manag 113(4):45–56

    Article  Google Scholar 

  • Patil VC, Al-Gaadi KA, Madugundu R, Tola E, Marey S, Aldosari A, Biradar CM, Gowda PH (2015) Assessing agricultural water productivity in desert farming system of Saudi Arabia. IEEE J Sel Top Appl 8:284–297

    Google Scholar 

  • Payero O, Irmak S (2008) Construction, installation, and performance of two repacked weighing lysimeters. Irrig Sci 26(2):191–202. https://doi.org/10.1007/s00271-007-0085-9

    Article  Google Scholar 

  • Pereira LS, Allen RG, Smith M, Raes D (2015) Crop evapotranspiration estimation with FAO56: past and future. Agric Water Manag 147:4–20

    Article  Google Scholar 

  • Rawat KS, Bala A, Singh SK, Pal RK (2017) Quantifiation of wheat crop evapotranspiration and mapping: a case study from bhiwani district of Haryana, India. Agric Water Manag 187:200–209. https://doi.org/10.1016/j.agwat.2017.03.015

    Article  Google Scholar 

  • Reyes-Gonzalez A, Hay C, Kjaersgaard J, Neale C (2015) Use of remote sensing to generate crop coefficient and estimate actual crop use of remote sensing to generate crop coefficient and estimate actual crop evapotranspiration introduction. Atmos Sci. https://doi.org/10.13031/aim.20152190105

    Article  Google Scholar 

  • Santos L, Cruz GHT, Capuchinho FF, José JV, dos Reis EF (2019) Assessment of empirical methods for estimation of reference evapotranspiration in the Brazilian Savannah. Austral J Crop Sci 13(7):1094–1104. https://doi.org/10.21475/ajcs.19.13.07.p1569

    Article  Google Scholar 

  • Sawadogo A, Hessels T, Gundogdu KS, Demir AO (2020) Comparative analysis of the pySEBAL model and lysimeter for estimating actual evapotranspiration of the soybean crop in Adana. Int J Eng Geosci 5(2):060–065. https://doi.org/10.26833/ijeg.573503

    Article  Google Scholar 

  • Senay GB, Friedrichs M, Singh RK, Velpuri NM (2016) Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin. Remote Sens Environ 185:171–185

    Article  Google Scholar 

  • Su Z (2002) The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 6:85–100

    Article  Google Scholar 

  • TAGEM-DSI (2017) Plant water consumption of irrigated plants in Turkiye. The Republic of Türkiye, Ministry of Agriculture and Forestry, General Directorates of Agricultural Research and Policies (TAGEM) and State Hydraulic Works (DSI), Published by TAGEM, Ankara, Turkiye, pp. 590 (In Turkish)

  • Tasumi M (2003) Progress in operational estimation of regional evapotranspiration using satellite imagery [Ph. D. thesis], University of Idaho, Moscow, Idaho, USA

  • Tasumi M (2019) Estimating evapotranspiration using METRIC model and Landsat data for better understandings of regional hydrology in the western Urmia Lake Basin. Agric Water Manag 226:105805. https://doi.org/10.1016/j.agwat.2019.105805

    Article  Google Scholar 

  • Twine T, Kustas W, Norman J, Cook D, Houser P, Meyers T, Prueger J, Starks P, Wesely M (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric for Meteorol 103(3):279–300. https://doi.org/10.1016/S0168-1923(00)00123-4

    Article  Google Scholar 

  • Vanino S, Pulighe G, Nino P, De Michele C, Falanga Bolognesi S, D’Urso G (2015) Estimation of evapotranspiration and crop coefficients of tendone vineyards using multi-sensor remote sensing data in a Mediterranean environment. Remote Sens 7(11):14708–14730

    Article  Google Scholar 

  • Vanino S, Nino P, De Michele C, Bolognesi SF, D’Urso G, Di Bene C, Napoli R (2018) Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy. Remote Sens Environ 215:452–470

    Article  Google Scholar 

  • Zamani LS, Rahimzadegan M (2018) Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran). J Hydrol 561:523–531. https://doi.org/10.1016/j.jhydrol.2018.04.025

    Article  Google Scholar 

  • Zhang XC, Wu JW, Wu HY, Li Y (2011) Simplified SEBAL method for estimating vast areal evapotranspiration with MODIS data. Water Sci Eng 4:24–35. https://doi.org/10.3882/j.1674-2370,2011.01.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Turkish National Geodesy and Geophysics Union (TUJJB) for the financial support of this work (Project Number: TUJJB-TUMEHAP-2020-01). In addition, this work was partially supported by the Scientific Research Projects (BAP) Coordination Unit of Cukurova University (Project Number: FBA-2019-11309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Alsenjar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsenjar, O., Cetin, M., Aksu, H. et al. Actual evapotranspiration estimation using METRIC model and Landsat satellite images over an irrigated field in the Eastern Mediterranean Region of Turkey. Med. Geosc. Rev. 5, 35–49 (2023). https://doi.org/10.1007/s42990-023-00099-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42990-023-00099-y

Keywords

Navigation