Skip to main content
Log in

A regulated deficit irrigation strategy for hedgerow olive orchards with high plant density

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background & Aims

There is not a consensus on the best irrigation approach for super-high density (SHD) olive orchards. Our aim was to design and test a regulated deficit irrigation (RDI) strategy for a sustainable balance between water saving, tree vigour and oil production.

Methods

We tested our RDI strategy for 3 years in an ‘Arbequina’ orchard with 1,667 trees ha−1. Two levels of irrigation reduction were applied, 60RDI and 30RDI, scaled to replacing 60 % and 30 %, respectively, of the of irrigation needs (IN). We also had a full irrigation (FI) treatment as control, with IN totalling 4,701 m3 ha−1

Results

The 30RDI treatment showed the best balance between water saving, tree vigour and oil production. With a yearly irrigation amount (IA) of 1,366 m3 ha−1, which meant 72 % water saving as compared to FI, the reduction in oil yield was 26 % only.

Conclusions

Our results, together with recent knowledge on the effect of water stress on fruit development, allowed us to suggest a potentially improved RDI strategy for which a total IA of ca. 2,100 m3 ha−1 was calculated. Both some management details and the benefits of this suggested RDI strategy are still to be tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alegre S, Marsal J, Mata M, Arbonés A, Girona J (2002) Regulated deficit irrigation in olive tres (Olea europea L., cv ‘Arbequina’) for oil production. Acta Horticult 586:259–262

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. Irrigation and drainage paper 56. FAO, Rome

    Google Scholar 

  • Ben-Gal A, Kool D, Agam N, van Halsema GE, Yermiyahu U, Yafe A, Presnov E, Erel R, Majdop A, Zipori I, Segal E, Rüger S, Zimmermann U, Cohen Y, Alchanatis V, Dag A (2010) Whole-tree water balance and indicators for short-term drought stress in non-bearing ‘Barnea’ olives. Agric Water Manag 98:124–133

    Article  Google Scholar 

  • Berenguer MJ, Vossen PM, Grattan SR, Connell JH, Polito VS (2006) Tree irrigation levels for optimum chemical and sensory properties of olive oil. Hortic Sci 41:427–432

    CAS  Google Scholar 

  • Beutel J, Uriu K, Lilleland O (1983) Leaf analysis for California deciduous fruits. In: Soil and plant tissue testing in California. University of California, Bull. 1879

  • Caruso G, Rapoport HF, Gucci R (2013) Long-term evaluation of yield components of young olive trees during the onset of fruit production under different irrigation regimes. Irrig Sci 31:37–47

    Article  Google Scholar 

  • Centritto M, Wahbi S, Serraj R, Chaves MM (2005) Effects of partial rootzone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate. II. Photosynthetic responses. Agric Ecosyst Environ 106:303–311

    Article  Google Scholar 

  • Chalmers DJ, Mitchell PD, van Heek L (1981) Control of peach tree growth and productivity by regulated water supply, tree density and summer pruning. J Am Soc Hortic Sci 106:307–312

    Google Scholar 

  • Chapman HD (ed) (1966) Diagnostic criteria for plants and soils. University of California, Div. of Agric. Science, Berkeley, p 793

    Google Scholar 

  • Childers NF (ed) (1966) Fruit nutrition. Horticultural publications, New Jersey, 888 pp

    Google Scholar 

  • Connor DJ (2006) Towards optimal designs for hedgerow olive orchards. Aust J Agric Res 57:1067–1072

    Article  Google Scholar 

  • Correa-Tedesco G, Rousseaux MC, Searles PS (2010) Plant growth and yield responses in olive (Olea europaea) to different irrigation levels in an arid region of Argentina. Agric Water Manag 97:1829–1837

    Article  Google Scholar 

  • Costagli G, Gucci R, Rapoport H (2003) Growth and development of fruits of olive ‘Frantoio’ under irrigated and rainfed conditions. J Hortic Sci Biotechnol 78:119–124

    Google Scholar 

  • Cuevas MV, Martín-Palomo MJ, Diaz-Espejo A, Torres-Ruiz JM, Rodriguez-Dominguez CM, Perez-Martin A, Pino-Mejías R, Fernández JE (2012) Assessing water stress in a hedgerow olive orchard from sap flow and trunk diameter measurements. Irrig Sci. doi:10.1007/s00271-012-0357-x

    Google Scholar 

  • d’Andria R, Lavini A, Morelli G, Patumi M, Terenziani S, Calandrelli D, Fragnito F (2004) Effect of water regimes on five picking and double aptitude olive cultivars (Olea europaea L.). J Hortic Sci Biotechnol 78(1):15–23

    Google Scholar 

  • De la Rosa R, León L, Guerrero N, Barranco D, Rallo L (2006) Resultados preliminares de un ensayo de densidades de plantación en olivar en seto. Olivicultura 160:43–46

    Google Scholar 

  • Diaz-Espejo A, Walcroft AS, Fernandez JE, Hafidi B, Palomo MJ, Giron IF (2006) Modeling photosynthesis in olive leaves under drought conditions. Tree Physiol 26:1445–1456

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Espejo A, Buckley TN, Sperry JS, Cuevas MV, de Cires A, Elsayed-farag S, Martin-Palomo MJ, Muriel JL, Perez-Martin A, Rodriguez-Dominguez C, Rubio-Casal A, Torres-Ruiz JM, Fernández JE (2012) Steps toward an improvement in process–based models of water use by fruit trees: a case study in olive. Agric Water Manag 114:37–49

    Article  Google Scholar 

  • Dichio B, Xiloyannis C, Angelopoulos K, Nuzzo V, Bufo SA, Celano G (2003) Drought–induced variations of water relations parameters in Olea europaea. Plant Soil 257:381–389

    Article  CAS  Google Scholar 

  • Fereres E, Evans RG (2006) Irrigation of fruit trees and vines: an introduction. Irrig Sci 24:55–57

    Article  Google Scholar 

  • Fernández JE, Moreno F, Girón IF, Blázquez OM (1997) Stomatal control of water use in olive tree leaves. Plant Soil 190:179–192

    Article  Google Scholar 

  • Fernández JE, Diaz-Espejo A, d’Andria R, Sebastiani L, Tognetti R (2008) Potential and limitations of improving olive orchard design and management through modelling. Plant Biosyst 142(1):130–137

    Article  Google Scholar 

  • Fernández JE, Moreno F, Martín-Palomo MJ, Cuevas MV, Torres-Ruiz JM, Moriana A (2011) Combining sap flow and trunk diameter measurements to assess water needs in mature olive orchards. Environ Exp Bot 72:330–338

    Article  Google Scholar 

  • Fernández-Escobar R (2001) Fertilización. In: Barranco D, Fernández-Escobar R, Rallo L (eds) El Cultivo del Olivo. Mundi Prensa, Madrid, pp 255–284

    Google Scholar 

  • Fregapane G, Gómez–Rico A, Salvador MD (2010) Influence of irrigation management and ripening on virgin olive oil quality and composition. In: Preedy VR (ed) Olives and olive oil in health and disease prevention Elsevier, chapter 6, pp. 51–58

  • Goldhamer DA (1999) Regulated deficit irrigation for California canning olives. Acta Horticult 474:369–372

    Google Scholar 

  • Goldhamer DA, Viveros M, Salinas M (2006) Regulated deficit irrigation in almonds: effects of variation in applied water and stress timing on yield and yield components. Irrig Sci 24:101–114

    Article  Google Scholar 

  • Gómez-del-Campo M (2007) Effect of water supply on leaf area development, stomatal activity, transpiration, and dry matter production and distribution in young olive trees. Aus J Agric Res 58:385–391

    Article  Google Scholar 

  • Gómez-del-Campo M (2010) Physiological and growth responses to irrigation of a newly established hedgerow olive orchard. HortSci 45(5):809–814

    Google Scholar 

  • Gómez-del-Campo M (2011) Summer deficit–irrigation strategies in a hedgerow olive orchard cv. ‘Arbequina’: effect on fruit characteristics and yield. Irrig Sci. doi:10.1007/s00271-0299-8

    Google Scholar 

  • Grattan SR, Berenguer MJ, Connell JH, Polito VS, Vossen PM (2006) Olive oil production as influenced by different quantities of applied water. Agric Water Manag 85:133–140

    Article  Google Scholar 

  • Greven M, Neal S, Green S, Dichio B, Clothier B (2009) The effects of drought on the water use, fruit development and oil yield from young olive trees. Agric Water Manag 96:1525–1531

    Article  Google Scholar 

  • Gucci R, Lodolini EM, Rapoport HF (2009) Water deficit–induced changes in mesocarp cellular processes and the relationship between mesocarp and endocarp during olive fruit development. Tree Physiol 29:1575–1585

    Article  PubMed  Google Scholar 

  • Gucci R, Caruso G, Bertolla C, Urbani S, Taticchi A, Esposto S, Servili M, Sifola MI, Pellegrini S, Pagliai M, Vignozzi N (2012a) Changes of soil properties and tree performace induced by soil management in a high–density olive orchard. Eur J Agron 41:18–27

    Article  Google Scholar 

  • Gucci R, Goldhamer DA, Fereres E (2012b) Olive. In: Steduto P, Hsiao TC, Fereres E, Raes D (eds) Crop yield response to water. Irrigation and Drainage Paper No. 66, Food and Agriculture Organisation of the United Nations, Rome, pp 298–313

  • Hammami SBM, Manrique T, Rapoport HF (2011) Cultivar–based fruit size in olive depends on different tissue and cellular processes throughout growth. Sci Hortic 130:445–451

    Article  Google Scholar 

  • Iniesta F, Testi L, Orgaz F, Villalobos FJ (2009) The effects of regulated and continuous deficit irrigation on the water use, growth and yield of olive trees. Eur J Agron 30:258–265

    Article  Google Scholar 

  • Kijne JW, Barker R, Molden DJ (2003) Water productivity in agriculture: limits and opportunities for improvement. CABI, IWMI, Wallingford

    Book  Google Scholar 

  • Lavee S, Wodner M (1991) Factors affecting the nature of oil accumulation in fruit of olive (Olea europaea L.) cultivars. J Hortic Sci 66(5):583–591

    Google Scholar 

  • Lavee S, Nashef M, Wodner M, Harshemesh H (1990) The effect of complementary irrigation added to old olive trees (Olea europaea L.) cv. Souri on fruit characteristics, yield and oil production. Adv Hortic Sci 4:135–138

    Google Scholar 

  • Lavee S, Hanoch E, Wodner M, Abramowich H (2007) The effect of predetermined deficit irrigation on the performance of cv. Muhasan olives (Olea europaea L.) in the eastern coastal plain of Israel. Sci Hortic 112:156–163

    Article  Google Scholar 

  • León L, de la Rosa R, Rallo L, Guerrero N, Barranco D (2007) Influence of spacing on the initial production of hedgerow ‘Arbequina’ olive orchards. Span J Agric Res 5:554–558

    Google Scholar 

  • Martínez JM, Muñoz E, Alba J, Lanzón A (1975) Informe sobre utilización del analizador de rendimientos “Abencor”. Report about the use of the “Abencor” analyzer. Grasas y Aceite 26:379–385

    Google Scholar 

  • Morettini A (1972) Olivicoltura, 2nd edn. Ramo Editoriale Degli Agricoltori (REDA) Press, Rome

    Google Scholar 

  • Moriana A, Fereres E (2002) Plant indicators for scheduling irrigation of young olive trees. Irrig Sci 21:83–90

    Article  Google Scholar 

  • Moriana A, Orgaz F, Pastor M, Fereres E (2003) Yield responses of a mature olive orchard to water deficits. J Am Soc Hortic Sci 128:425–431

    Google Scholar 

  • Moriana A, Pérez-López D, Gómez-Rico A, Salvador MD, Olmedilla N, Ribas F, Fregapane G (2007) Irrigation scheduling for traditional, low–density olive orchards: water relations and influence on oil characteristics. Agric Water Manag 87:171–179

    Article  Google Scholar 

  • Moriana A, Pérez-López D, Prieto MH, Ramírez-Santa-Pau M, Pérez-Rodriguez JM (2012) Midday stem water potential as a useful tool for estimating irrigation requirements in olive trees. Agric Water Manag 112:43–54

    Article  Google Scholar 

  • Motilva MJ, Tovar MJ, Romero MP, Alegre S, Girona J (2000) Influence of regulated deficit irrigation strategies applied to olive trees (Arbequina cultivar) on oil yield and oil composition during the fruit ripening period. J Sci Food Agric 80(14):2037–2043

    Article  CAS  Google Scholar 

  • Orgaz F, Fereres E (2001) Riego. In: Barranco D, Fernández–Escobar R, Rallo L (eds) El Cultivo del Olivo, 4th edn. Coedition Mundi–Prensa and Junta de Andalucía, Madrid, pp 285–306

    Google Scholar 

  • Pastor M, Hidalgo J, Vega V (2006a) Densidades de plantación en olivar de regadío. Agricultura 888:708–718

    Google Scholar 

  • Pastor M, Hidalgo J, Vega V, Fereres E (2006b) Viabilidad agronómica y económica de las plantaciones superintensivas en Andalucía. Vida Rural 238:60–66

    Google Scholar 

  • Pastor M, García-Vila M, Soriano MA, Vega V, Fereres E (2007) Productivity of olive orchards in response to tree density. J Hortic Sci Biotechnol 82(4):555–562

    Google Scholar 

  • Patumi M, d’Andria R, Marsilio V, Fontanazza G, Morelli G, Lanza B (2002) Olive and olive oil quality after intensive monocone olive growing (Olea europaea L., cv. Kalamata) in different irrigation regimes. Food Chem 77:27–34

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RDC (2011) nlme: linear and nonlinear mixed effects models. R package version 3.1–102. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Proietti P, Nasini L, Ilarioni L (2012) Photosynthetic behavior of Spanish Arbequina and Italian Maurino olive (Olea europaea L.) cultivars under super–intensive grove conditions. Photosynthetica 50(2):239–246

    Article  CAS  Google Scholar 

  • Rallo L (1995) Selección y mejora genética del olivo en España. Olivae 59(12):46–53

    Google Scholar 

  • Rallo L, Rapoport HF (2001) Early growth and development of the olive fruit mesocarp. J Hortic Sci Biotechnol 76:408–412

    Google Scholar 

  • Ramos AF, Santos FL (2009) Water use, transpiration, and crop coefficients for olives (cv. Cordovil), grown in orchards in Southern Portugal. Biosyst Eng 102:321–333

    Article  Google Scholar 

  • Ramos AF, Santos FL (2010) Yield and olive oil characteristics of a low–density orchard (cv. Cordovil) subjected to different irrigation regimes. Agric Water Manag 97:363–373

    Article  Google Scholar 

  • Rapoport HF, Rallo L (1991) Post–anthesis flower and fruit abscission in ‘Manzanillo’ olive. J Am Soc Hortic Sci 116:720–723

    Google Scholar 

  • Rapoport HF, Costagli G, Gucci R (2004) The effect of water deficit during early fruit development on olive fruit morphogenesis. J Am Soc Hortic Sci 129:121–127

    Google Scholar 

  • Rius X, Lacarte JM (2010) La revolución del olivar. El cultivo en seto, 340 pp

  • Rodriguez-Dominguez CM, Ehrenberger W, Sann C, Rüger S, Sukhorukov V, Martín-Palomo MJ, Diaz-Espejo A, Cuevas MV, Torres-Ruiz JM, Perez-Martin A, Zimmermann U, Fernández JE (2012) Concomitant measurements of stem sap flow and leaf turgor pressure in olive trees using the leaf patch pressure probe. AgricWater Manag 114:50–58

    Article  Google Scholar 

  • Schwabe WW, Lionakis SM (1996) Leaf attitude in olive relation to drought resistance. J Hortic Sci 71(1):157–166

    Google Scholar 

  • Servili M, Esposto S, Lodolini E, Selvaggini R, Taticchi A, Urbani S, Montedoro GF, Serravalle M, Gucci R (2007) Irrigation effects on quality, phenolic composition, and selected volatiles of virgin olive oils cv. Leccino. J Agric Food Chem 55:6609–6618

    Article  PubMed  CAS  Google Scholar 

  • Testi L, Villalobos FJ, Orgaz F, Fereres E (2006) Water requirements of olive orchards: I simulation of daily evapotranspiration for scenario analysis. Irrig Sci 24:69–76

    Article  Google Scholar 

  • Tognetti R, d’Andria R, Morelli G, Alvino A (2005) The effect of deficit irrigation on seasonal variations of plant water use in Olea europaea L. Plant Soil 273(1–2):139–155

    Article  CAS  Google Scholar 

  • Tognetti R, d’Andria R, Lavini A, Morelli G (2006) The effect of deficit irrigation on crop yield and vegetative development of Olea europaea L. (cvs. Frantoio and Leccino). Eur J Agron 25:356–364

    Article  Google Scholar 

  • Tognetti R, d’Andria R, Sacchi R, Lavini A, Morelli G, Alvino A (2007) Deficit irrigation affects seasonal changes in leaf physiology and oil quality of Olea europaea (cultivars Frantoio and Leccino). Ann Appl Biol 150:169–186

    Article  Google Scholar 

  • Tognetti R, Morales-Sillero A, d’Andria R, Fernández JE, Lavini A, Sebastiani L, Troncoso A (2008) Deficit irrigation and fertigation practices in olive growing: convergences and divergences in two case studies. Plant Biosyst 142(1):138–148

    Article  Google Scholar 

  • Tognetti R, Giovanelli A, Lavini A, Morelli G, Fragnito F, d’Andria R (2009) Assessing environmental controls over conductances through the soil-plant-atmosphere continuum in an experimental olive tree plantation of southern Italy. Agric For Meteorol 149:1229–1243

    Article  Google Scholar 

  • Tous J, Romero A, Plana J (1998) Comportamiento agronómico y comercial de cinco variedades de olivo en Tarragona. Invest Agr: Prod Prot Veg 13(1–2):97–109

    Google Scholar 

  • Tous J, Romero A, Hermoso JF (2010) New trends in olive orchard design for continuous mechanical harvesting. Adv Hortic Sci 24(1):43–52

    Google Scholar 

  • Tovar MJ, Romero MP, Alegre S, Girona J, Motilva MJ (2002) Composition of organoleptic characteristics of oil from Arbequina olive (Olea europaea L.) trees under deficit irrigation. J Sci Food Agric 82:1755–1763

    Article  Google Scholar 

  • Troncoso A, Cantos M, Liñán J, Fernández JE (2001) Fertirrigación. In: Barranco D, Fernández-Escobar R, Rallo L (eds) El Cultivo del Olivo, 4th edn. Coedition Mundi–Prensa and Junta de Andalucía, Madrid, pp 307–332

    Google Scholar 

  • USDA (2010) Keys to soil taxonomy (11th Edition). United States Department of Agriculture, Natural Resource Conservation Service, 334 pp

  • Vossen PM, Connell JH, Klonsky KM, Livingston P (2004) Sample costs to establish a super–high density Olive Orchard and productive olive oil – Sacramento Valley. University of California, Cooperative Extension. Department of Agricultural and Resource Economics, Davis

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministry of Science and innovation (research project AGL2009-11310/AGR), by the Junta de Andalucía (research project AGR-6456-2010) and by the FEDER programme. C.M. R-D, J.M. T-R and S. E-F benefited from a FPDI research fellowship from the Junta de Andalucía, a FPI grant from the Spanish Ministry of Science and Innovation, and a JAE-predoc fellowship of the CSIC, respectively. Antonio Montero helped us with the field and laboratory work. Thanks to the owners of Internacional Olivarera, S.A.U. (Interoliva), for allowing us to make the experiments in the Sanabria orchard. We also thank Silvia Seller, agronomist, and Juan Francisco Bernabé, foreman, for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Fernández.

Additional information

Responsible Editor: Tibor Kalapos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 184 kb)

Table S1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, J.E., Perez-Martin, A., Torres-Ruiz, J.M. et al. A regulated deficit irrigation strategy for hedgerow olive orchards with high plant density. Plant Soil 372, 279–295 (2013). https://doi.org/10.1007/s11104-013-1704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1704-2

Keywords

Navigation