Skip to main content
Log in

Spatial distribution and ecological risk assessment of potentially toxic elements in agricultural soils, stream sediments, and plants around Lakhouat mine (northwestern Tunisia)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Potentially toxic element (PTE) distribution in 21 soil samples, 07 stream sediment samples and wheat near an abandoned mining site in the region of Lakhouat (northwestern Tunisia), sampled during dry season was investigated. The main objective was to characterize the environmental impacts of the former Pb-Zn extractive activity in the region. Chemical analysis revealed the presence of high PTE concentrations up to 28,040 mg kg−1 (Pb) and 94,420 mg kg−1 (Zn). Regarding nearby agricultural soils, PTE concentrations are exceeding the Tunisian standards for non-contaminated soils. The same contamination was detected in the stream sediments for which the Pb and Zn levels were found to be 54 to 147 times higher compared to the geochemical tolerance. Moreover, important concentrations of PTEs up to 638 mg kg−1 (Pb) and 939 mg kg−1 (Zn) were also found even in deep horizons (beyond 40 cm). Pollution index (PI) and Nemerow integrated pollution index (NIPI) gave several statuses of sediment quality revealing a polymetallic contamination dominated by the two elements Pb and Zn. The contamination found in Lakhouat soils is the result of the chemical and mineralogical composition of the soil and the infiltration of water loaded with PTEs from the discharges nearby. Extremely high PTE concentrations were also found in the roots (Pb = 1086 mg kg−1; Zn = 16.9 mg kg−1) and aerial parts (Pb = 3231 mg kg−1; Zn = 150 mg kg−1) of wheat grown on the contaminated soils, exceeding the thresholds for plant toxicity. Our study helps to assess the ecological risk due to potentially toxic elements contamination in agricultural soils, stream sediments and plants in Tunisia and other similar regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arenas-Lago D, Lago-Vila M, Rodrigues-Seijo A, Andrade ML, Vega FA (2014) Risk of metal mobility in soils from a Pb/Zn depleted mine (Lugo, Spain). Environ Earth Sci 72:2541–2556

    Article  Google Scholar 

  • Babbou-Abdelmalek C, Sebei A, Chaabani F (2011) Incurred environmental risks and potential contamination sources in an abandoned mine site. Afr J Environ Sci Technol 5:894–891

    Google Scholar 

  • Baize D, Paquereau H (1997) Teneurs totales en éléments traces dans les sols agricoles de Seine-et-Marne. Etude et gestion des sols 4(2):77–94

    Google Scholar 

  • Baize D, Tomassone R (2003) Modélisation empirique du transfert du cadmium et du zinc des sols vers les grains de blé tendre. Programme GESSOL–La Châtre. Etude et Gestion des Sols 10(4):219–240

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

  • Barkouch Y & Pineau A (2016) Evaluation of the impact of mine activity on surrounding soils of Draa Lasfar mine in Marrakech- Morocco African Journal of Environmental Science and Technology, Vol 10, No 1

  • Bose S, Bhattacharyya AK (2008) Heavy metals accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere 70:1264–1272

    Article  Google Scholar 

  • Boussen S, Sebei A, Soubrand-Colin M, Bril HF, Chaabani A, Abdeljaouad S (2010) Mobilization of lead-zinc rich particles from mine tailings in northern Tunisia by aeolian and run-off processes. Bull Soc Géol Fr 181(5):371–379

    Article  Google Scholar 

  • Boussen S, Soubrand M, Bril H, Ouerfelli K, Abdeljaouad S (2013) Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticumaestivum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma 192:227–236

    Article  Google Scholar 

  • Carrillo Gonzalez R, Gonzalez-Chavez MCA (2006) Metal accumulation in wild plants surrounding mining wastes. Environ Pollut 144:8–92

    Google Scholar 

  • Chopin EIB, Alloway BJ (2007) Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Ríotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water Air Soil Pollut 182:245–261

    Article  Google Scholar 

  • Chopin EIB, Marin B, Mkoungafoko R, Rigaux A, Hopgood MJ, Delannoy E, Cancès B, Laurain M (2008) Factors affecting distribution and mobility of trace elements, Cu, Pb, Zn in a perennial grapevine, Vitis vinifera L. in the Champagne region of France. Environ Pollut 156:1092–1098

    Article  Google Scholar 

  • Conesa HM, Faz Á, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena–La Unión mining district, SE Spain. Sci Total Environ 366:1–11

    Article  Google Scholar 

  • Daldoul G, Souissi R, Souissi F, Jemmali N, Chakroun HK (2015) Assessment and mobility of heavy metals in carbonated soils contaminated by old mine tailings in north Tunisia. (2015). J Afr Earth Sci 110:150–159

    Article  Google Scholar 

  • Elmayel I, Esbrí JM, Efrén GO, García-Noguero EM, Elouear Z, Jalel B, Farieri A, Roqueñí N, Cienfuegos P, Higueras P (2020) Evolution of the speciation and mobility of Pb, Zn and Cd in relation to transport processes in a mining environment. Int J Environ Res Public Health 17(14):4912. https://doi.org/10.3390/ijerph17144912

  • Galas S, Galas A (2016) The qualification process of mining projects in environmental impact assessment: criteria and thresholds Resources Policy. Volume 49:204–212

    Google Scholar 

  • Gomes P, Valente T, Braga MAS, Gomes P, Valente T, Sequeira Braga MA, Grande JA, de la Torre ML (2016) Enrichment of trace elements in the clay size fraction of mining soils. Environ Sci Pollut Res 23(2016):6039. https://doi.org/10.1007/s11356-015-4236-x

    Article  Google Scholar 

  • Guedria A (1981) Comportement des métaux (Pb-Zn) dans les sols encroûtés par le calcaire (région de Bou Grine, Tunisie) application à la prospection géochimique de ces métaux. Thèse Doc. 3ème cycle Université d’Orléans, 135 p

  • INNORPI (Institut National de NOrmalisation et de la Propriete Industrielle) (2003a) Soil quality, vocabulary. Part 1: terms and definitions related to the protection and soil pollution. NT 91. 10 p

  • INNORPI (Institut National de NOrmalisation et de la Propriete Industrielle) (2003b) Soil quality, vocabulary. Part 4: terms and definitions related to rehabilitation of soils and sites. NT 91. 12p

  • INNORPI (Institut National de NOrmalisation et de la Propriete Industrielle) (2003c) Soil quality: extraction of trace elements soluble in nitrohydrochloric solution, NT 91. 33p

  • Jiang X, Lu WX, Zhao HQ, Yang QC, Yang ZP (2014) Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Nat Hazards Earth Syst Sci 14:1599–1610

    Article  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. Press, C.R.C

    Google Scholar 

  • Kasowska D, Gediga K, Spiak Z (2018) Heavy metal and nutrient uptake in plants colonizing post-flotation copper tailings. Environ Sci Pollut Res 25:824

    Article  Google Scholar 

  • Leleyter L, Rousseau C, Biree L, Baraud F (2012) Comparison of EDTA, HCl and sequential extraction procedures, for selected metals (Cu, Mn, Pb, Zn), in soils, riverine and marine sediments - Journal of Geochemical Exploration, pp 51–59

  • Loska K, Wiechula D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30(2):159–165

    Article  Google Scholar 

  • McKenzie RM (1980) The adsorption of lead and other heavy metals on oxides of manganese and iron. Aust. Aust J Soil Res 18:61–73

    Article  Google Scholar 

  • Messedi H (2002) Caractérisation des eaux, des sédiments et des rejets miniers de Lakhouat (Bassin versantaval de l’oued Siliana). DEA, Fac. Sci. Tunis, 91p

    Google Scholar 

  • Mlayah A, Hatira N, Ferreira Da Silva E, Braham A, Dit Guiras WR, Charef C, Noronha F, Ben Hamza C (2010) Mobilisation et devenir des elements traces métalliques (ETM) des terrils miniers : cas de l’ancienne mine de Boujabeur (Tunisie centre-ouest). Notes du service géologique de Tunisie 78:43–56

    Google Scholar 

  • Mseddi H & Ben Mammou A (2014) Contamination assessment of Remir and Siliana stream sediments by El Akhouat mine discharges (Siliana basin, North-western of Tunisia). Geo-Eco-Trop 38(2):305–316

  • Nansai K, Nakajima K, Kagawa K, Kondos Y, Shigetomi Y, Suh, S (2015) Global mining risk footprint of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum in Japan. Environ Sci Technol, 2015, 49 (4):2022–2031

  • National Office of Mines, Office national des mines (2010) internal report

  • Nazir R, Khan M, Muhammad M, Hameed R, Naveed R, Shahab S, Ameer N, Sajed M, Ullah M, Rafeeq M, Shaheen Z (2015) Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam kohat. J Pharm Sci Res 7(3):89–97

    Google Scholar 

  • Nemerow NL (1985) Stream, lake, estuary, and ocean pollution. Van Nostrand Reinhold Publishing Co., New York

    Google Scholar 

  • Nouairi J, Rocha F, Medhioub M (2019) Geobiological assessment of the pollution effect of abandoned mine ores (Fej Lahdoum, Northwest Tunisia). Arab J Geosci 12:806 (2019)

    Article  Google Scholar 

  • Pais I, Benton J (2000) The handbook of trace elements. FL, St. Lucie Press, Boca Raton, 223 p

    Google Scholar 

  • Puga AP, Abreu CA, Melo LCA et al (2015) Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Environ Sci Pollut Res Int. 2015 22(22):17606–17614. https://doi.org/10.1007/s11356-015-4977-6

    Article  Google Scholar 

  • Rezvani M, Zaefarian F (2011) Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis. Aust J Agr Eng 2:114–119

    Google Scholar 

  • Rousseau MS (1994) Retention, transformation and mobility of toxic metals in soils. Toxic metals in soil-plant systems, J. S. M. R, pp 63–152

  • Sahraoui H & Hachicha M (2016) Caractérisation de la contamination spatiale par le Pb, Zn et Cd de l’ancienne mine de Lakhouat (Siliana-Tunisie) Volume IABC(9). www.jnsciences.org ISSN, pp 2286–5314

  • Sainfeld P (1952) Les gîtes plombo-zincifères de Tunisie. Annales des Mines et de la Géologie N° 9. Imprimerie S.E.F.A.N. Tunis. 252 p

  • Salhi I (2012) Etude de la mobilité des métaux lourds à partir des rejets miniers en Pb-Zn et impact sur laqualité des sols dans le site minier de l’AKHOUAT. Mastère de Recherche en Sciences de la Terre

  • Saqalli M, Hamrita A, Maestripieri N et al (2020) “Not seen, not considered”: mapping local perception of environmental risks in the Plain of Mornag and Jebel Ressass (Tunisia). Euro-Mediterr J Environ Integr 5:30

    Article  Google Scholar 

  • SPAC (2000) Soil and Plant Analysis Council— Handbook of reference methods. CRC Press, Boca Raton, Florida, p 2000C

    Google Scholar 

  • Sun Y, Zhou Q, Wang L, Liu W (2009) Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J Hazard Mater 161:808–814

    Article  Google Scholar 

  • Yang ZP, Lu WX, Long YQ, Liu XR (2010) Prediction and precaution of heavy metal pollution trend in urban soils of Changchun City. Urban Environ Urban Ecol 23:1–4

    Google Scholar 

  • Zang F, Wang S, Nan Z, Ma J, Zhang Q, Chen Y (2017) Li Y (2017) Accumulation, spatio-temporal distribution, and risk assessment of heavy metals in the soil-corn system around a polymetallic mining area from the Loess Plateau, northwest China. Geoderma 305:188–196

    Article  Google Scholar 

  • Zhao L, Xu Y, Hou H, Shangguan Y, Li F (2014) Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Sci Total Environ. 468–469, 654–662. https://doi.org/10.1016/j.scitotenv.2013.08.094

  • Zhu G, Xiao H, Guo Q, Song B, Zheng G, Zhang Z, Zhao J, Okoli CP (2018) Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicol Environ Saf 151(30):266–271

    Article  Google Scholar 

  • Zúñiga-Vázquez D, Armienta MA, Deng Y, Cruz O, Aguayo A, Ceniceros N (2018) Evaluation of Fe, Zn, Pb, Cd and As mobility from tailings by sequential extraction and experiments under imposed physico-chemical conditions. Geochemistry: Exploration, Environment, Analysis. https://doi.org/10.1144/geochem2018-041

Download references

Acknowledgments

Technical support was provided by Geobiotec laboratory in Aveiro, Portugal and Unité de Recherche “Aliments bioprocédés toxicologie environnements” in Caen, France.

Funding

This research was financially supported by LaSCOM laboratory and The Ministry of Higher Education and Scientific Research in Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihène Nouairi.

Additional information

Responsible Editor: Amjad Kallel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouairi, J., Baraud, F., Leleyter, L. et al. Spatial distribution and ecological risk assessment of potentially toxic elements in agricultural soils, stream sediments, and plants around Lakhouat mine (northwestern Tunisia). Arab J Geosci 14, 130 (2021). https://doi.org/10.1007/s12517-020-06435-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-06435-y

Keywords

Navigation