Skip to main content
Log in

Geobiological assessment of the pollution effect of abandoned mine ores (Fej Lahdoum, Northwest Tunisia)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The present work deals with a geobiological assessment of metal pollution in the abandoned Fej Lahdoum mine in Northwest Tunisia. The geological part of the assessment deals with the petrographic, mineralogical, and geochemical study of wastes, soils, and water collected from the mine. The biological part of the assessment investigated the metal presence within leaves and roots of Ampelodesmos mauritanicus and Typhonium flagelliforme species. Waste characterization revealed the presence of potentially toxic elements (PTEs) mainly Pb and Zn (46,040 and 17,650 mg kg−1, respectively, as average value). Anomalous contents in metals exceeding the geochemical background and global range specified for calcic soils are found with average concentrations up to 10,313 mg kg−1 for Pb and 5282 mg kg−1 for Zn, maximum levels are detected in soils in the immediate vicinity of the dumps particularly in the upper horizons but also in depth resulting from plowing and mud cracks which facilitated the incorporation and vertical migration of the pollutants. Enrichment factor (EF) and geoacumulation index (Igeo) indicated different classes of contamination of Fej Lahdoum soils. Metal concentration in plants and water is not very high compared to soils and does not exceed the maximum recommended concentrations, thus, not currently presenting a risk of contamination of the food chain. Nonetheless, further erosion and leaching would have relevant damage on water and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abidi A, Abdelouahed B (1986) The deposit Fedj Lahdoum. Geological data with estimated reserves. Campaigns survey 1979-1985, Unpublished Report. CO.MI.NO., 54 p., 28 tab

  • Acevedo-Figueroa D, Jimenez BD, Rodriguez-Sierra CJ (2006) Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environmental Pollution 141:336–342

    Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments biogeochemistry bioavailability and risk of metals, second edn. Springer-Verlag, New-York

    Google Scholar 

  • Ali M, Elhagwa A, Elfaki J, Sulieman M (2016) Influence of the artisanal gold mining on soil contamination with heavy metals: a case study from Dar-Mali locality, North of Atbara, River Nile State, Sudan. Eurasian J Soil Sci 2017 6(1):28–36

    Google Scholar 

  • Antoniadis V, Golia EE, Shaheen SM, Rinklebe J (2017) Bioavailability and health risk assessment of potentially toxic elements in Thriasio Plain, near Athens, Greece. Environ Geochem Health 39(2):319–330

    Google Scholar 

  • APHA, AWWA and WPCF (1999) Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association, Washington DC

    Google Scholar 

  • Ayari J, Charef A (2016) Spatial distribution and contamination assessment of trace metals in agricultural soils around Sidi Ahmed Pb-Zn abandoned mine, Tunisia. Int J Innov Appl Stud 17:646–661

    Google Scholar 

  • Babbou-Abdelmalek C, Sebei A, Chaabani F (2011) Incurred environmental risks and potential contamination sources in an abandoned mine site. Afr J Environ Sci Technol 5(11):894–915

    Google Scholar 

  • Bahrami S, Ardejani FD (2017) ODM: an analytical solution-based tool for reacting oxygen diffusion modelling in mine spoils. Environ Earth Sci 76(2):80

    Google Scholar 

  • Baize D, Paquereau H (1997) Teneurs totales en éléments traces dans les sols agricoles de Seine-et-Marne. Etude et gestion des sols 4(2):77–94

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr, 3: 643–654

    Google Scholar 

  • Barkouch Y, Pineau A (2016) Evaluation of the impact of mine activity on surrounding soils of Draa Lasfar mine in Marrakech-Morocco. Afr J Environ Sci Technol 10(1):44–49

    Google Scholar 

  • Ben Arfa O (2003) Etude d’impacts des rejets de la mine de Jalta sur l’environnement. DEA, Faculty of Sciences of Tunis, 97p

  • Bose S, Bhattacharyya AK (2008) Heavy metals accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere 70:1264–1272

    Google Scholar 

  • Bosmans H, Peanhuys J (1980) The distribution of heavy metals in the soils of the Kempen. Pedologie 30(2):191–223

    Google Scholar 

  • Bouhlel S., 1993. Ore deposit, mineralogy and mineralization modeling test to F-Ba-Sr-Pb-Zn associated with the carbonates (Jurassic and Cretaceous) and the Triassic diapirs: Deposit of Stah, Kohl, Zriba, Guebli, Boujaber and Fedj Lahdoum (Northern Tunisia). PhD, thesis, Tunis. 293 p.

  • Boussen S, Sebei A, Soubrand-Colin M, Bril HF, Chaabani M, Abdeljaouad S (2010) Mobilization of lead-zinc rich particles from mine tailings in northern Tunisia by aeolian and run-off processes. Bull Soc Géol France 181(5):371–379

    Google Scholar 

  • Boussen S, Soubrand M, Bril H, Ouerfelli K, Abdeljaouad S (2013) Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticumaestivum) incarbonated Mediterranean (Northern Tunisia) soils. Geoderma 192:227–236

    Google Scholar 

  • Buat-Menard P, Chesselet R (1979) Variable influence of the atmospheric flux on the trace-metal chemistry of oceanic suspended matter. Earth Planet Sci Lett 42(3):399–411

    Google Scholar 

  • Cao S et al (2016) Drought-tolerant Streptomyces pactum Act12 assist phytoremediation of cadmium-contaminated soil by Amaranthus hypochondriacus: great potential application in arid/semi-arid areas. Environmental Science and Pollution Research 23:14898–14907

    Google Scholar 

  • Capozzi F, Adamo P, Di Palma A, Aboal JR, Bargagli R, Fernandez JA et al (2017) Sphagnum palustre clone vs native Pseudoscleropodium purum: a first trial in the field to validate the future of the moss bag technique. Environ Pollut 225:323–328

    Google Scholar 

  • Carlson CL, Adriano DC (1992) Environmental impacts of coal combustion residues. J Environ Qual 22(2):227–247

    Google Scholar 

  • Carrillo Gonzalez R, Gonzalez-Chavez MCA (2006) Metal accumulation in wild plants

  • Celardin F (2002) Approche semi-quantitative de la mobilité. In : Baize D. & Tercé M., coord. Un point sur les éléments traces métalliques dans les sols : approches fonctionnelles et spatiales. Paris: INRA, 565

  • Charef A, Bouhlel S, Sheppard SMF (1987) The stratabound Pb-Zn deposit and salt bearing diaper of Fedj el Hadoum (Northern Tunisia Geological frame, fluid inclusions, isotopic data and genetic model 8th Regional meeting of sedimentology, pp. 145–146

  • Chester R (2000) Marine Geochemistry. Academic Press,London 506

  • Chopin EIB, Alloway BJ (2007) Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Ríotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water Air Soil Pollut 182:245–261

    Google Scholar 

  • Conesa HM, Faz Á, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena–La Unión mining district, SE Spain. Sci Total Environ 366:1–11

    Google Scholar 

  • Cui JL, Luo CL, Tang CWY, Chan TS, Li XD (2017) Speciation and leaching of trace metal contaminants from e-waste contaminated soils. J Hazard Mater 329:150–158

    Google Scholar 

  • Delavar MA, Safari Y (2016) Spatial distribution of heavy metals in soils and plants in Zinc Town, northwest Iran. Int J Environ Sci Technol 13(1):297–306

    Google Scholar 

  • Dudka S, Adriano C (1995) Environmental Impacts of Metal Ore Mining and Processing. Journal of Environmental Quality 26(3):590–602

    Google Scholar 

  • El Hachimi ML, Bouabdli A, Fekhaoui M, (2013) Les rejets miniers de traitement : caractérisation, capacité polluante et impacts environnementaux, mine Zeida, Mine Mibladen, Haute Moulouya (Maroc). Déchets sciences et techniques, 63. 32–42. Organic compounds, Danish Environmental Protection Agency

  • Garcia-Sanchez A, Alvarez-Ayuso E, Rodriguez F (2002) Sorption of As (V) by some oxyhydroxides and clay minerals. Application to its immobilization in two polluted mining soils. Clay Miner 37:187–194

    Google Scholar 

  • Ghorbel M, Munoz M, Courjault-Radé P, Destrigneville C, De Parseval P, Souissi R, Souissi F, Ben Mammou A, Abdeljaouad S (2010) Health risk assessment for human exposure by direct ingestion of Pb, Cd, Zn bearing dust in the former miner's village of Jebel Ressas, NE Tunisia. Eur J Mineral 22(25):639–649

    Google Scholar 

  • Harris MA (2016) Erodibility of unconsolidated mine wastes under simulated rainfall and hydraulic forces after organic amendments. Geobiotechnological Solutions to Anthropogenic Disturbances (pp. 311-333). Springer International Publishing

  • Hooda P (Ed.) (2010) Trace elements in soils. John Wiley & Sons

  • Huang M, Zettl JD, Barbour SL, Pratt D (2016) Characterizing the spatial variability of the hydraulic conductivity of reclamation soils using air permeability. Geoderma 262:285–293

    Google Scholar 

  • INNORPI (Institut National de Normalisation et de la Propriete Industrielle), 2003. Soil quality, vocabulary. Part 4: Terms and definitions related to rehabilitation of soils and sites. NT 91. 12p.

  • Jauzein A, Perthuisot V (1974) Découverte de Jurassique dans la région de Djebel Lansarine (feuille 1/50 000 de Tébourba, Tunisie septentrionale). C. R. Somm Soc Géol France 16:136–138

  • Kabata-Pendias A, Pendias H (1992) Trace Elements in Soils and Plants, 2nd edn. C.R.C. Press

  • Karbassi B, Gentry R, Kaur V, Siegel E, Jousheghany F, Medarametla S, Fuhrman B, Safar M, Hutchins L, Kieber-Emmons T (2016) Pre-diagnosis blood glucose and prognosis in women with breast cancer. Cancer Metab 4:7. https://doi.org/10.1186/s40170-016-0147-7

    Article  Google Scholar 

  • Kassaa S (1990) Thermo-optical characterization and physico-chemical fluid inclusions in minerals, application to celestite from the transition zone of Fedj Lahdoum Pb-Zn mine (Northern Tunisia). Master, FST, 76 p

  • Kebir T (2012) Etudes de contamination, d’accumulation et de mobilité de quelques métaux lourds dans les légumes, des fruits et des sols agricoles situés près d’une décharge industrielle de l’usine Alzinc de la ville de Ghazouet. Ph.D diss., Université de Tlemcen

  • Laatar E (1980) Lead-zinc deposits and saline Triassic diapirism in northern Tunisia: Concentrations peridiapiric of Nefate Fedj El-Adoum mining district (Tebousouk region). Ph.D diss., University Pierre and Marie Curie (Paris VI)

  • Lago-Vila M, Rodríguez-Seijo A, Arenas-Lago D, Andrade L, Vega MFA (2017) Heavy metal content and toxicity of mine and quarry soils. J Soils Sediments 17(5):1331–1348

    Google Scholar 

  • Langman JB, Blowes DW, Amos RT, Atherton C, Wilson D, Smith L, Sinclair SA (2017) Influence of a tundra freeze-thaw cycle on sulfide oxidation and metal leaching in a low sulfur, granitic waste rock. Appl Geochem 76:9–21

    Google Scholar 

  • Lee CG, Chon HT, Jung MC (2001) Heavy metal contamination in the vicinity of the Daduk Au-Ag-Pb-Zn mine in Korea. Appl Geochem 16:1377–1386

    Google Scholar 

  • Mckenzie JC (1980) What is social nutrition? Nutr Bull 5(6):309–325

    Google Scholar 

  • Messedi H (2002) Caractérisation des eaux, des sédiments et des rejets miniers de Lakhouat (Bassin versantaval de l’oued Siliana). DEA, FST

  • Mlayah A, Hatira N, Ferreira Da Silva E, Braham A, Dit Guiras WR, Charef C, Noronha F, Ben Hamza C (2010) Mobilisation et devenir des elements traces métalliques (ETM) des terrils miniers : cas de l’ancienne mine de Boujabeur (Tunisie centre-ouest). Notes du service géologique de Tunisie 78:43–56

    Google Scholar 

  • Karbassi B, Gentry R, Kaur V, Siegel E, Jousheghany F, Medarametla S, Fuhrman B, Safar M, Hutchins L, Kieber-Emmons T (2016) Pre-diagnosis blood glucose and prognosis in women with breast cancer. Cancer Metab 4:7. https://doi.org/10.1186/s40170-016-0147-7

  • Mseddi H, Ben Mammou A (2014) Contamination assessment of Remir and Siliana stream sediments by El Akhouat mine discharges (Siliana basin, North-western of Tunisia). Geo-Eco-Trop 38(2):305–316

    Google Scholar 

  • Muller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geojournal 2:108–118

    Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Google Scholar 

  • Nazir R, Khan M, Masab M, Rehman H, Rauf N, Shahab S, Ameer N, Sajed M, Ullah M, Rafeeq M, Shaheen Z (2015) Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam kohat. J Pharm Sci Res 7(3):89–97

    Google Scholar 

  • Norgate TE, Rankin WJ (2000) Life cycle assessment of copper and nickel production. Proceesings, Minprex 2000, International Conference on Minerals Processing and Extractive Metallurgy, pp. 133- 138

  • Nouairi J, Hajjaji W, Senff L, Novais R, Beruberri L, Labrincha JA (2015) Mining tailing reuse in sulfobelitic clinker formulations. . CRC Press – Taylor & Francis Group

  • Othmani MA, Souissi F, Bouzahzah H, Bussière B, Silva D, E.D. Benzaazoua. M. (2015) The flotation tailings of the former Pb-Zn mine of Touiref (NW Tunisia): mineralogy, mine drainage prediction, base-metal speciation assessment and geochemical modeling. Environmental Science and Pollution Research 22(4):2877–2890

    Google Scholar 

  • Oumar B, Ekengele NL, Balla OAD (2014) Évaluation du niveau de pollution par les métaux lourds des lacs Bini et Dang, Région de l’Adamaoua, Cameroun. Afrique SCIENCE 10(2):184–198

    Google Scholar 

  • Pais I, Jones J (2000) The handbook of trace elements. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Parbhakar-Fox A, Fox N, Jackson L (2016) Geometallurgical evaluations of mine waste–an example from the Old Tailings Dam, Savage River, Tasmania. In 3rd AusIMM International Geometallurgy Conference 2016 (pp. 193-204)

  • Perthuisot V (1981) Diapirism in northern Tunisia. J Struct Geol 3:231–235

    Google Scholar 

  • Reimann C, de Caritat P (2005) Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. 337. 91–107. Report Nr 48, 1995

  • Rezvani M, Zaefarian F (2011) Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis. Aust J Agric Eng 2(4):114–119

    Google Scholar 

  • Romero-Freire A, Fernández IG, Torres MS, Garzón FM, Peinado FM (2016) Long-term toxicity assessment of soils in a recovered area affected by a mining spill. Environ Pollut 208:553–561

    Google Scholar 

  • Roseby SJ, Kopittke PM, Mulligan DR, Menzies NW (2017) Evaluation of pyritic mine tailings as a plant growth substrate. J Environ Manag 201:207–214

    Google Scholar 

  • Ross SM (1994) Retention, transformation and mobility of toxic metals in soils. In: Ross SM (ed) Toxic Metals in Soil-Plant Systems. John Wiley and Sons, Chichester, pp 64–152

    Google Scholar 

  • Sahli L, El Okki M, Afri-Mehennaoui FZ, Mehennaoui S (2014) Utilization d’indices pour l’évaluation de la qualité des sediments: cas du basin Boumerzoug (Algérie). Eur Sci J 10(35):1857–7881

    Google Scholar 

  • Sahraoui H, Hachicha M (2016) Caractérisation de la contamination spatiale par le Pb, Zn et Cd de l’ancienne mine de Lakhouat (Siliana-Tunisie). Journal of new sciences, Agriculture and Biotechnology, IABC(9), 1255-1262

  • Sainfeld P (1952) The lead-zinc deposits of Tunisia. Annals of Mines and Geology N°9. S.E.F.A.N.Tunis, 252

  • Scott-Fordsmand JJ, Pedersen MB (1995) Soil Quality criteria for selected inorganic compounds. Working Report n°48. København K, Denmark: Danish Ministry of the Environment, Danish Environmental Protection Agency

  • Sebei A (2007) Impacts of mining wastes on the environment, cases watershed of Wadi Mellegue and Tessa (Northern Tunisia). Ph.D diss., FST

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T (2016) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater, Elsevier 325:36–58

    Google Scholar 

  • Smuda J, Dold B, Spangenberg JE, Pfeifer H-R (2008) Geochemistry and stable isotope composition of fresh alkaline porphyry copper tailings: implications on sources and mobility of elements during transport and early stages of deposition. Chem Geol 256:62–76

    Google Scholar 

  • SPAC (2000) Soil and Plant Analysis Council— Handbook of Reference Methods. CRC Press, Boca Raton, Florida, p 2000C

    Google Scholar 

  • Sun Y, Zhou Q, Wang L, Liu W (2009) Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. Journal of Hazardous surrounding mining wastes. Environ Pollut 144:8–92

    Google Scholar 

  • Sutherland RA (2000) Bed Sediment-Associated Trace Metals in an Urban Stream, Oahu, Hawaii. Environ Geol 39:611–627

    Google Scholar 

  • Thompson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J Appl Cristallog 20(2):79–83

    Google Scholar 

  • Uzu G, Sobanska S, Aliouane Y, Pradere P, Dumat C (2009) Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environ Pollut 157:1178–1185

    Google Scholar 

  • Vila JM, Ghanmi M, Ben Youssef M (2001) The “salt glaciers” underwater of passive continental margin in the northeast of the Maghreb (Algeria, Tunisia) and the Gulf Coast (USA): Comparisons, special view on the “salt glaciers” composite illustrated by that of Fedj el Adoum (Northwest Tunisia) and global review. Ecloga geol. Helv.

  • WHO (1998) Guideline for drinking water quality, 2nd edition, volume 2, health criteria and other supporting information. World Heatth Organisation, Geneva

    Google Scholar 

  • Williamson BJ, Mikhailova I, Purvis OW, Udachin V (2004) SEM-EDX analysis in the source apportionment of particulate matter on Hypogymnia physodes lichen transplants around the Cu smelter and former mining town of Karabash, South Urals, Russia. Sci Total Environ 322(1):139–154

    Google Scholar 

  • Xiong T-T, Leveque T, Austruy A, Goix S, Schreck E, Dappe V, Sobanska S, Foucault Y, Dumat C (2014) Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environ. Geochem. Health 36:897–909

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihène Nouairi.

Additional information

Responsible Editor: Haroun Chenchouni

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouairi, J., Rocha, F. & Medhioub, M. Geobiological assessment of the pollution effect of abandoned mine ores (Fej Lahdoum, Northwest Tunisia). Arab J Geosci 12, 806 (2019). https://doi.org/10.1007/s12517-019-4870-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-019-4870-6

Keywords

Navigation