Skip to main content
Log in

Evaluation of total trace metal (TTMs) enrichment from estuarine sediments of Uppanar, southeast coast of India

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The present study was carried out to investigate the impact of anthropogenic influences on Uppanar estuary situated at Cuddalore with regard to trace metal concentration in sediment samples of the study area. The Uppanar River runs similar to the coast south of Cuddalore town and a number of small streams of domestic, treated and unprocessed effluents from industries join the coast through the river. Average concentration of Cr, Cu and Ni (106, 87 and 137.1 ppm) is above the continental value indicating that increase in the concentration may be due to metal industries, and surface runoff of the fertilizer remains increases the concentration of the metal in the sediments. There is moderate level of pollution related to anthropogenic activities. The trace metals showed association with Fe and Mn indicating their adsorption on Fe–Mn oxyhydroxides. Correlation coefficient between pairs of metals concentration show that all metals and organic carbon significantly correlate with trace metal except sand and calcium carbonate. Geoaccumulation index and enrichment factors, the sediment is classified as unpolluted to moderately polluted with Fe, and Cu and moderate to considerable with Pb and Co. From the study, it can be revealed the anthropogenic activities are the prime source for the biodegradable toxic metal in the sediment of Uppanar estuary in the Cuddalore coastal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acevedo-Figueroa D, Jimenez BD, Rodriguez-Sierra CJ (2006) Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environ Pollut 141:336–342

    Article  Google Scholar 

  • Achyuthan H, Richardmohan D, Srinivasalu S, Selvaraj K (2002) Trace metals in the sediment cores of estuary and tidal zones from northern part of southeast coast of India. Indian J Mar Sci 31:141–149

    Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biochemistry, bioavailability and risks of metals. Springer Verlag. 867 pp

  • Alagarsamy R (2006) Distribution and seasonal variation of trace metals in surfacesediments of the Mandovi estuary, west coast of India. Estuar Coast Shelf Sci 67:333–339

    Article  Google Scholar 

  • Alonso Castillo ML, Sanchez Trujillo I, Vereda Alonso E, Garcia de Torres A, Cano Pavon JM (2013) Bioavailability of heavy metals in water and sediments from a typical Mediterranean Bay (Malaga Bay, Region of Andalucia, Southern Spain). Mar Pollut Bull 76:427–434

    Article  Google Scholar 

  • Argese E, Ramieri E, Bettiol C, Pavoni B, Chiozzotto E, Sfriso A (1997) Pollutant exchange at the water/sediment interface in the Venice canals. Water Air Soil Pollut 99:255–263

    Google Scholar 

  • Atkinson CA, Jolley DF, Simpson SL (2007) Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 69:1428–1437

    Article  Google Scholar 

  • Basaham AS, El-Sayed MA (1998) Distribution and phase association of some major and trace metals in the Arabian Gulf sediment. Estuar Coast Shelf Sci 46:185–194

    Article  Google Scholar 

  • Bloundi MK, Duplay J, Quaranta G (2009) Heavy metal contamination of coastal lagoon sediments by anthropogenic activities: the case of Nador (East Morocco). Environ Geol 56:833–843

    Article  Google Scholar 

  • Bordas F, Bourg ACM (2001) Effect of solid/liquid ratio on the remobilization of Cu, Pb, Cd and Zn from polluted river sediment (modeling of the results obtained and determination of association constants between the metals and the sediment). Water Air Soil Pollut 128:391–400

    Article  Google Scholar 

  • Calmano W, Hong J, Forstner U (1993) Binding and mobilisation of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci Technol 28:223–235

    Google Scholar 

  • Calvert SE, Pedersen TF (1993) Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Mar Geol 113:67–88

    Article  Google Scholar 

  • Carballeira A, Carral E, Puente XM and Villares R (1997) Estado de Conservacion de la Costa de Galicia. Nutrientes y Metalespesadosensedimentos y organismosintermareales. Universidad de Santiago de Compostela. Xunta de Galicia, Conselleria de Pesca, Marisqueoy Acuicultura, pp. 107

  • Carral E, Villares R, Puente X, Carballeira A (1995) Influence of watershed lithology on heavy metal levels in estuarine sediments and organisms in galicia (north-west spain). Mar Pollut Bull 30:604–608

    Article  Google Scholar 

  • Carral AR, Brassell SC, Graham SA (1992) Upper Permian lacustrine oil shales, southern Junggar basin, northwest China. Am Assoc Pet Geol Bull 76:1874–1902

    Google Scholar 

  • Chapman PM, Wang F (2001) Assessing sediment contamination in estuaries. Environ Toxicol Chem 20:3–22

    Article  Google Scholar 

  • Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FM (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407:3972–3985

    Article  Google Scholar 

  • Duran R, Canals M, Sanz JL, Lastras G, Amblas D, Micallef A (2012) Morphology and sediment dynamics of the northern Catalan continental shelf, northwestern Mediterranean Sea. Geomorphology

  • Feely HW, Kipphut GW, Trier RM, Kent‘ C (1980) 12*Ra and Rh in coastal waters. Estuar Coast Mur Sci 11:179–205

    Article  Google Scholar 

  • Fernandes C, Fontainhas-Fernandes A, Cabral D, Salgado MA (2008) Heavy metals in water, sediment and tissues of Liza saliens from Esmoriz-Paramos lagoon, Portugal. Environ Monit Assess 136:267–275

    Article  Google Scholar 

  • Francois R (1988) A study on the regulation of the concentrations of some trace metals (rubidium, strontium, zinc, lead, copper, vanadium, chromium, nickel, manganese, and moloybdenum) in Saanich Inlet sediments, British Columbia, Canada. Mar Geol 83:285–308

    Article  Google Scholar 

  • Gaudette H, Flight W, Toner L, Folger D (1974) An inexpensive titration method for the determination of organic carbon in recent sediments. J Sediment Petrol 44:249–253

    Google Scholar 

  • Gopinath A, Nair SM, Kumar NC, Jayalakshmi KV, Pamalal D (2009) A baseline study of trace metals in a coral reef sedimentary environment, Lakshadweep Archipelago. Environ Earth Sci 59:1245–1266

    Article  Google Scholar 

  • Graham WF, Bender ML, And Klinkhammer GP (1976) Manganese in Narragansett Bay. Limnol Oceanogr 21:665–673

    Article  Google Scholar 

  • Hanter DR (1983) The role of tonalites and trondjemites in the formation of the earth;s crust in Swaziland and Transvaal, South Africa, in trondjemites, dacites, and related rocks, pp. 223–238, Mir, Moscow, (Russian translation)

  • Harikumar PS, Nasiru P, Mujeeburahmanm P (2009) Distribution of heavy metals in the core sediments of a tropical wetland system. Int J Environ Sci Technol 6(2):225–232

    Article  Google Scholar 

  • Hou D, He J, Lu C, Ren L, Fan Q, Wang J et al (2013) Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China. Ecotoxicol Environ Saf 93:135–144

    Article  Google Scholar 

  • Ingram RL (1970) Procedures in sedimentary petrology. Wiley, New York, USA

    Google Scholar 

  • Jayaprakash M, Ravichandran M (2011) Seasonal variation on physico-chemical parameters and trace metals in groundwater of an industrial area of north Chennai, India. Indian J Sci Technol 4(6):646–649

    Google Scholar 

  • Jayaprakash M, Nagarajan R, Velmurugan PM, Sathiyamoorthy J, Krishnamurthy RR, Urban B (2012) Assessment of trace metal contamination in a historical freshwater canal (Buckingham Canal), Chennai, India. Environ Monit Assess 184(12):7407–7424

    Article  Google Scholar 

  • Jayaprakash M, Nagarajan R, Muthusamy S, Gopal V, Viswam A, Kalaivanan P (2013) Groundwater geochemistry of Neyveli Lignite Mine-Industrial Complex, Tamil Nadu, India and its suitability for irrigation. Int J Adv Earth Sci Eng 1(1):27–42

    Google Scholar 

  • Jonathan MP, Ram Mohan V, Srinivasalu S (2004) Geochemical variations of major and trace elements in recent sediments, off the Gulf of Mannar, the southeast coast of India. Environ Geol 45:466–480

    Article  Google Scholar 

  • Kim Y, Kim BK, Kim K (2010) Distribution and speciation of heavy metals and their sources in Kumho River sediment, Korea. Environ Earth Sci 60:943–952

    Article  Google Scholar 

  • Krishna AK, Govil PK (2008) Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, Southern India. Environ Geol 54:1465–1472

    Article  Google Scholar 

  • Kucuksezgin F, Uluturhan E, Batki H (2008) Distribution of heavy metals in water, particulate matter and sediments of Gediz River (Eastern Aegean). Environ Monit Assess 141:213–225

    Article  Google Scholar 

  • Kumar AV, Patil RS, Nambi KSV (2001) Source apportionment of suspended particulate matter at two traffic junctions in Mumbai, India. Atmos Environ 35:4245–4251

    Article  Google Scholar 

  • Lee BG, Lee JS, Luoma SN, Choi HJ, Koh CH (2000) Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments. Environ Sci Technol 34:4517–4523

    Article  Google Scholar 

  • Lin YC, Chang-Chien GP, Chiang PC, Chen WH, Lin YC (2013) Multivariate analysis of heavy metal contaminations in seawater and sediments from a heavily industrialized harbor in Southern Taiwan. Mar Pollut Bull 76:266–275

    Article  Google Scholar 

  • Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:18–97

    Article  Google Scholar 

  • Loring DH and Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews, 32: 2350283, and 1995, Regional Seas, Reference methods for marine pollution studies no. 63, United Nations Environment Programme

  • Loska K, Wiechula D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159–165

    Article  Google Scholar 

  • Luoma SN, Rainbow PS (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol 39:1921–1931

    Article  Google Scholar 

  • Luoma SN (1990) Processes affecting metal concentrations in estuarine and coastal marine sediments. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC Press, Inc, Boca Raton, pp 51–66

    Google Scholar 

  • Magesh NS, Chandrasekar N, Roy VD (2011) Spatial analysis of trace element contamination in sediments of Tamiraparani estuary, southeast coast of India. Estuar Coast Shelf Sci 92:618–628

    Article  Google Scholar 

  • Mahalakshmi M, Srinivasan M, Murugan M, Balakrishnan S, Devanathan K (2011) Isolation and identification of total heterotrophic bacteria and human pathogens in water and sediment from Cuddalore fishing harbour after the tsunami. Asian J Biol Sci 4:148–156

    Article  Google Scholar 

  • Muller G (1981) Die Schwermetallbelastung der sedimenten des Neckars und Seine Nebenflusse. Chemiker-Zeitung 6:157–164

    Google Scholar 

  • Muthu Raj S, Jayaprakash M (2008) Distribution and enrichment of trace metals in marine sediments of Bay of Bengal, off Ennore, south-east coast of India. Environ Geol 56:207–217

    Article  Google Scholar 

  • Nasr SM, Okbah MA, Kasem SM (2006) Environmental assessment of heavy meal pollution in bottom sediments of Aden Port, Yemen. Int J Oceans Oceanogr 1(1):99–109

    Google Scholar 

  • Nobi EP, Dilipan E, Thangaradjou T, Sivakumar K, Kannan L (2010) Geochemical and geostatistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuar Coast Shelf Sci 87:253–264

    Article  Google Scholar 

  • Nyangababo JT, Henry I, Omutunge E (2005) Heavy metal contamination in plants, sediments and air precipitation of Katonga, Simiyu and Nyando wetlands of Lake Victoria Basin, East Africa. Bull Environ Contam Toxicol 75(1):189–196, 8 pages

    Article  Google Scholar 

  • Paneer Selvam A, LaxmiPriya S, Kakolee B, Hariharan G, Purvaja R, Ramesh R (2012) Heavy metal assessment using geochemical and statistical tools in the surface sediments of Vembanad Lake, southwest coast of India. Environ Monit Assess 184:5899–5915

    Article  Google Scholar 

  • Pekey H, Karakas D, Ayberk S, Tolun L, Bakoglu M (2004) Ecological risk assessment using trace elements from surface sediments of Izmit Bay (Northeastern Marmara Sea) Turkey. Mar Pollut Bull 48:946–953

    Article  Google Scholar 

  • Prasanna MV, Praveena SM, Chidambaram S, Nagarajan R, Elayaraja A (2012) Evaluation of water quality pollution indices for heavy metal contamination monitoring: a case study from Curtin Lake, Miri City, East Malaysia. Environ Earth Sci 67(7):1987–2001

    Article  Google Scholar 

  • Purushothaman P, Chakrapani GJ (2007) Heavy metals fractionation in Ganga River sediments, India. Environ Monit Assess 132(1–3):475–489

    Article  Google Scholar 

  • Rajamanickam GV, Setty MGAP (1973) Distribution of phosphorus and organic carbon in the nearshore Sediments of Goa. Indian J Mar Sci 2:84–89

    Google Scholar 

  • Ratheesh Kumar CS, Joseph MM, Gireesh Kumar TR, Renjith KR, Manju M, Chandramohanakumar N (2010) Spatial variability and contamination of heavy metals in the inter-tidal systems of a tropical environment. Int J Environ Res 4(4):691–700

    Google Scholar 

  • Ray AK, Tripathy SC, Patra S, Sarma VV (2006) Assessment of Godavari estuarine mangrove ecosystem through trace metal studies. Environ Int 32:219–223

    Article  Google Scholar 

  • Riley JP, Chester R (1971) Introduction to marine chemistry. Academic Press, London, 465 pp

    Google Scholar 

  • Rubio B, Nombela MA, Vilas F (2000) Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Mar Pollut Bull 40:968–980

    Article  Google Scholar 

  • Saeedi M, Li LY, Karbassi AR, Zanjani AJ (2013) Sorbed metals fractionation and risk assessment of release in river sediment and particulate matter. Environ Monit Assess 185:1737–1754. doi:10.1007/s10661-012-2664-3

    Article  Google Scholar 

  • Savage C, Thrush SF, Lohrer SM, Hewitt JE (2012) Ecosystem services transcend boundaries: estuaries provide resource subsidies and influence functional diversity in coastal benthic communities. Plos ONE 7(1–8):42708

    Article  Google Scholar 

  • Savvides C, Papadopoulos A, Haralambous KJ, Loizidou M (1995) Sea sediments contaminated with heavy metals: metal speciation and removal. Water Sci Technol 32:65–67

    Article  Google Scholar 

  • Sekabira K, OryemOriga H, Basamba TA, Mutumba G, Kakudidi E (2010) Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int J Environ Sci Technol 7(3):435–446

    Article  Google Scholar 

  • Selvaraj K, Ram-Mohan V, Szefer P (2004) Evaluation of metal contamination in coastal sediments of the Bay of Bengal, India: Geochemical and statistical approaches. Mar Pollut Bull 49:174–185

    Article  Google Scholar 

  • Sesamal SK, Sahu BK, Panigrahy RC (1986) Texture and composition of sediments of Hooghly estuary and near shore environment. Indian J Mar Sci 15:201–202

    Google Scholar 

  • Simpson SL, Ward D, Strom D, Jolley DF (2012) Oxidation of acid-volatile sulfide in surface sediments increases the release and toxicity of copper to the benthic amphipod Melitaplumulosa. Chemosphere 201288:953–961

    Article  Google Scholar 

  • Simpson SL (2005) Exposure–effect model for calculating copper effect concentrations in sediments with varying copper binding properties: a synthesis. Environ Sci Technol 39:7089–7096

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in naturalwaters (3rd ed.). Wiley, New York

    Google Scholar 

  • Sun J, Wang M-H, Ho Y-S (2012) A historical review and bibliometric analysis of research on estuary pollution. Mar Pollut Bull 64:13–21

    Article  Google Scholar 

  • Sundarajan S, Srinivasalu S (2010) Geochemistry of core sediments from Gulf of Mannar, India. Int J Environ Res 4(4):861–876

    Google Scholar 

  • Superville P-J, Prygiel E, Magnier A, Lesven L, Gao Y, Baeyens W et al (2014) Daily variations of Zn and Pb concentrations in the Deûle River in relation to the resuspension of heavily polluted sediments. Sci Total Environ 470–471:6007

    Google Scholar 

  • Szefer P, Glasby GP, Pempkowiak J, Kaliszan R (1995) Extraction studies of heavy-metal pollutants in surficial sediments from the southern Baltic Sea off Poland. Chem Geol 120:111–126

    Article  Google Scholar 

  • Szefer P,Glasby GP,Szefer K,Pempkowiak J, Kaliszan R(1998) Extraction studies of heavy metals pollutants in surficial sediments from the southern Baltic Sea of Poland. Chem Geol, 11–126

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Publs, London, p 312

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Anal Chem 51(7):845–885

    Article  Google Scholar 

  • Tomlinson DC, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol Mar Res 33:566–575

    Google Scholar 

  • Wangersky PJ (1986) Biological control of trace metal residence time and speciation: a review and synthesis. Mar Chem 18:269–297

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1232

    Article  Google Scholar 

  • Zahra A, Hashmi MZ, Malik RN, Ahmed Z (2013) Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the KurangNallah—feeding tributary of the Rawal Lake Reservoir, Pakistan. Sci Total Environ 470–471 C:925–933

    Google Scholar 

  • Zhang J, Liu CL (2002) Riverine composition and estuarine geochemistry of particulate metals in China: weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54:1051–1070

    Article  Google Scholar 

  • Zhao H, Li X, Wang X, Tian D (2010) Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China. J Hazard Mater 183:20310

    Google Scholar 

  • Zwolsman JJ, van Eck GTM, Burger G (1996) Spatial and temporal distribution of trace metals in sediments from the Scheldt Estuary, South-west Netherlands. Estuar Coast Shelf Sci 43:55–79

    Article  Google Scholar 

Download references

Acknowledgments

The study forms a part of the University Grants Commission DST-FIST and SAP (Phase II), awarded to the Department of Applied Geology and Geology, University of Madras. The critical comments by reviewers are highly appreciated. The author (Dr. M. Jayaprakash) is grateful to the Department of Science and Technology, Govt. of India for the award of BOYSCAST, FASTRACK and UGC-CPEPA programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kalpana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalpana, G., Shanmugasundharam, A., Nethaji, S. et al. Evaluation of total trace metal (TTMs) enrichment from estuarine sediments of Uppanar, southeast coast of India. Arab J Geosci 9, 34 (2016). https://doi.org/10.1007/s12517-015-2048-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-015-2048-4

Keywords

Navigation