Skip to main content

Advertisement

Log in

Cardiac Imaging of Infiltrative Cardiomyopathies

  • Molecular Imaging (R Russell, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Infiltrative cardiomyopathies are characterized by deposition of abnormal material in the intra- or extracellular compartment of the myocardium resulting in impairment in cardiac filling and relaxation. Disorders of myocardial infiltration are distinct with differing abnormalities in cardiac histology, pathophysiology, morphology, and function. Cardiac imaging plays a critical role in management, facilitating diagnosis, risk stratification, disease monitoring, and treatment. Importantly, advances in imaging technology have enabled earlier detection, providing opportunity for intervention and improved patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rapezzi C, Merlini G, Quarta CC, Riva L, Longhi S, Leone O, et al. Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation. 2009;120(13):1203–12.

    Article  CAS  PubMed  Google Scholar 

  2. Feng D, Syed IS, Martinez M, Oh JK, Jaffe AS, Grogan M, et al. Intracardiac thrombosis and anticoagulation therapy in cardiac amyloidosis. Circulation. 2009;119(18):2490–7.

    Article  CAS  PubMed  Google Scholar 

  3. Falk RH, Plehn JF, Deering T, Schick Jr EC, Boinay P, Rubinow A, et al. Sensitivity and specificity of the echocardiographic features of cardiac amyloidosis. Am J Cardiol. 1987;59(5):418–22.

    Article  CAS  PubMed  Google Scholar 

  4. Rahman JE, Helou EF, Gelzer-Bell R, Thompson RE, Rodriguez ER, Hare JM, et al. Non-invasive diagnosis of biopsy proven cardiac amyloidosis. JACC. 2004;43(3):410–5.

    Article  PubMed  Google Scholar 

  5. Simons M, Isner JM. Assessment of relative sensitivities of noninvasive tests for cardiac amyloidosis in documented cardiac amyloidosis. Am J Cardiol. 1992;69(4):425–7.

    Article  CAS  PubMed  Google Scholar 

  6. Carroll JD, Gaasch WH, McAdam KP. Amyloid cardiomyopathy: characterisation by a distinctive voltage/mass relation. Am J Cardiol. 1982;49(1):9–13.

    Article  CAS  PubMed  Google Scholar 

  7. Cappelli F, Porciani MC, Bergesio F. Right ventricular function in AL amyloidosis: characteristic and prognostic implication. Eur Heart J Cardiovasc Imaging. 2012;13(5):416–22.

    Article  PubMed  Google Scholar 

  8. Klein AL, Hatle LK, Burstow DJ, Taliercio CP, Seward JB, Kyle RA, et al. Comprehensive Doppler assessment of right ventricular diastolic function in cardiac amyloidosis. JACC. 1990;15(1):99–108.

    Article  CAS  PubMed  Google Scholar 

  9. Patel AR, Dubrey SW, Mendes LA, Skinner M, Cupples A, Falk RH, et al. Right ventricular dilatation in primary amyloidosis: an independant predictor of survival. Am J Cardiol. 1997;80(4):486–92.

    Article  CAS  PubMed  Google Scholar 

  10. Quarta CC, Solomon SD, Uraizee I, Kruger J, Longhi S, Ferlito M, et al. Left ventricular structure and function in TTR-related versus AL amyloidosis. Circulation. 2014;129(18):1840–9.

    Article  PubMed  Google Scholar 

  11. Lee GY, Kim K, Choi JO, Kim SJ, Kim JS, Choe YH, et al. Cardiac amyloidosis without increased left ventricular wall thickness. Mayo Clin Proc. 2014;89(6):781–9.

    Article  PubMed  Google Scholar 

  12. Palka P, Lange A, Donnelly JE, Scalia G, Burstow DJ, Nihoyannopoulos P. Doppler tissue echocardiographic features of cardiac amyloidosis. J Am Soc Echocardiogr. 2002;15(11):1353–60.

    Article  PubMed  Google Scholar 

  13. Klein AL, Hatle LK, Taliercio CP. Prognostic significance of Doppler measures of diastolic function in cardiac amyloidosis: a Doppler echocardiography study. Circulation. 1991;83(3):808–16.

    Article  CAS  PubMed  Google Scholar 

  14. Kristen AV, Perz JB, Schonland SO, Hegenbart U, Schnabel PA, Kristen JH, et al. Non-invasive predictors of survival in cardiac amyloidosis. Eur J Heart Fail. 2007;9(6):617–24.

    Article  CAS  PubMed  Google Scholar 

  15. Porciani MC, Lilli A, Perfetto F, Massimiliano Rao C, Del Pace S, Ciaccheri M, et al. Tissue Doppler and strain imaging: a new tool for early detection of cardiac amyloidosis. Amyloid. 2009;16(2):63–70.

    Article  PubMed  Google Scholar 

  16. Lindqvist P, Olofsson BO, Backman C, Suhr O, Waldenström A. Pulsed tissue Doppler and strain imaging discloses early signs of infiltrative cardiac disease: a study on patients with familial amyloidotic polyneuropathy. Eur J Echocardiogr. 2006;7(1):22–30.

    Article  CAS  PubMed  Google Scholar 

  17. Koyama J, Ray-Sequin PA, Falk RH. Longitudinal myocardial function assessed by tissue velocity, strain and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation. 2003;107:2446–52.

    Article  PubMed  Google Scholar 

  18. Koyama J, Falk RH. Prognostic significance of strain Doppler imaging in light-chain amyloidosis. JACC Imaging. 2010;3(4):333–42.

    Article  Google Scholar 

  19. Liu D, Hu K, Niemann M, Herrmann S, Cikes M, Störk S, et al. Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy. Circ Cardiovasc Imaging. 2013;6(6):1066–72. Illustrates the concept of function-pattern based differentiation of cardiac amyloid from other causes of left ventricular hypertrophy.

    Article  PubMed  Google Scholar 

  20. Baccouche H, Maunz M, Beck T, Gaa E, Banzhaf M, Knayer U, et al. Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography. Echocardiography. 2012;29(6):668–77.

    Article  PubMed  Google Scholar 

  21. Syed IS, Glockner JF, Feng D, Araoz PA, Martinez MW, Edwards WD, et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Imaging. 2010;3(2):155–64. A cross-sectional study in 120 patients with confirmed amyloid which demonstrates the relationship of late gadolinium enhancement to clinical, morphologic, functional, and biochemical markers of prognosis.

    Article  Google Scholar 

  22. Maciera AM, Joshi J, Prasad SK, Moon JC, Perugini E, Harding I, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2005;111(2):186–93.

    Article  Google Scholar 

  23. Vogelsberg H, Mahrholdt H, Deluigi CC, Yilmaz A, Kispert EM, Greulich S, et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: non-invasive imaging compared to endomyocardial biopsy. JACC. 2008;51(10):1022–30.

    Article  PubMed  Google Scholar 

  24. Di Bella G, Minutoli F, Mazzeo A, Vita G, Oreto G, Carerj S, et al. MRI of cardiac involvement in transthyretin familial amyloid polyneuropathy. Am J Roentgenol. 2010;195(6):W394–9.

    Article  Google Scholar 

  25. Dungu JN, Valencia O, Pinney JH, Gibbs SD, Rowczenio D, Gilbertson JA, et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis. J Am Coll Cardiol Img. 2014;7(2):133–42. Retrospective de novo analysis of 97 histologically confirmed amyloid cases, showing that the pattern of late gadolinim enhancement can differentiate subtypes of cardiac amyloidosis.

    Article  Google Scholar 

  26. Austin BA, Tang WH, Rodriguez ER, Tan C, Flamm SD, Taylor DO, et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. J Am Coll Cardiol Img. 2009;2(12):1369–77.

    Article  Google Scholar 

  27. Maciera AM, Prasad SK, Hawkins PN, Roughton M, Pennell DJ. Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. J Cardiovasc Magn Reson. 2008;10:54.

    Article  Google Scholar 

  28. Ruberg FL, Appelbaum E, Davidoff R, Ozonoff A, Kissinger KV, Harrigan C, et al. Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in light-chain cardiac amyloidosis. Am J Cardiol. 2009;103(4):544–9.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. J Am Coll Cardiol Img. 2013;6(4):488–97. Shows utility of T1 mapping without use of contrast to quantify cardiac amyloidosis and possible increased sensitivity beyond LGE imaging.

    Article  Google Scholar 

  30. Bokhari S, Castano A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging. 2013;6(2):195–201.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Rapezzi C, Quarta CC, Guidalotti PL, Longhi S, Pettinato C, Leone O, et al. Usefulness and limitations of 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in the aetiological diagnosis of amyloidotic cardiomyopathy. Eur J Nucl Med Mol Imaging. 2011;38(3):470–8.

    Article  PubMed  Google Scholar 

  32. Hongo M, Urushibata K, Kai R, Takahashi W, Koizumi T, Uchikawa S, et al. Iodine-123 metaiodobenzylguanidine scintigraphic analysis of myocardial sympathetic innervation in patients with AL (primary) amyloidosis. Am Heart J. 2002;144(1):122–9.

    Article  CAS  PubMed  Google Scholar 

  33. Antoni G, Lubberink M, Estrada S, Axelsson J, Carlson K, Lindsjo L, et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med. 2013;54(2):213–20.

    Article  CAS  PubMed  Google Scholar 

  34. Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V, Ravert HT, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). J Nucl Med. 2010;51(6):913–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Hawkins PN, Lavender JP, Pepys MB. Evaluation of systemic amyloidosis by scintigraphy with 123I-labeled serum amyloid P component. NEJM. 1990;323(8):508–13.

    Article  CAS  PubMed  Google Scholar 

  36. Selvanayagam J, Hawkins PN, Paul BP, Myerson SG, Neubauer S. Evaluation and management of the cardiac amyloidosis. JACC. 2007;50(22):2101–10.

    Article  CAS  PubMed  Google Scholar 

  37. Dubrey SW, Hawkins PN, Falk RH. Amyloid diseases of the heart: assessment, diagnosis and referral. Heart. 2011;97(1):75–84.

    Article  CAS  PubMed  Google Scholar 

  38. Doughan AR, Williams BR. Cardiac sarcoidosis. Heart. 2006;92(2):282–8.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Chiu CZ, Nakatani S, Zhang G, Tachibana T, Ohmori F, Yamagishi M, et al. Prevention of left ventricular remodeling by long-term corticosteroid therapy in patients with cardiac sarcoidosis. Am J Cardiol. 2005;95:143–6.

    Article  CAS  PubMed  Google Scholar 

  40. Yazaki Y, Isobe M, Hiroe M, Morimoto S, Hiramitsu S, Nakano T, et al. Prognostic determinants of long-term survival in Japanese patients with cardiac sarcoidosis treated with prednisone. Am J Cardiol. 2001;88:1006–10.

    Article  CAS  PubMed  Google Scholar 

  41. Yodogawa K, Seino Y, Ohara T, Takayama H, Katoh T, Mizuno K. Effect of corticosteroid therapy on ventricular arrhythmias in patients with cardiac sarcoidosis. Ann Noninvasive Electrocardiol. 2011;16:140–7.

    Article  PubMed  Google Scholar 

  42. Diagnostic standard and guidelines for sarcoidosis. Japan J Sarcoidosis Other Granulomatous Disord. 2007;27:89–102. Ref Type: Generic

  43. Birnie DH, Sauer WH, Bogun F, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm Off J Heart Rhythm Soc. 2014;11:1305–23. Detailed statement of use of diagnostic testing including imaging for cardiac sarcoidosis, and use of imaging in guiding management.

    Article  Google Scholar 

  44. Cooper LT, Baughman KL, Feldman AM, Frustaci A, Jessup M, Kuhl U, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Circulation. 2007;116:2216–33.

    Article  PubMed  Google Scholar 

  45. Yazaki Y, Isobe M, Hiramitsu S, Morimoto S, Hiroe M, Omichi C, et al. Comparison of clinical features and prognosis of cardiac sarcoidosis and idiopathic dilated cardiomyopathy. Am J Cardiol. 1998;82(4):537–40.

    Article  CAS  PubMed  Google Scholar 

  46. Fahy GJ, Marwick T, McCreery CJ, Quigley PJ, Maurer BJ. Doppler echocardiographic detection of left ventricular diastolic dysfunction in patients with pulmonary sarcoidosis. Chest. 1996;109(1):62–6.

    Article  CAS  PubMed  Google Scholar 

  47. Joyce E, Ninaber MK, Katsanos S, Debonnaire P, Kamperidis V, Bax JJ, et al. Subclinical left ventricular dysfunction by echocardiographic speckle-tracking strain analysis relates to outcome in sarcoidosis. Eur J Heart Fail. 2014. doi:10.1002/ejhf.205.

    Google Scholar 

  48. Smedema JP, Snoep G, van Kroonenburgh MP, van Geuns RJ, Dassen WR, Gorgels AP, et al. Evaluation of the accuracy of gadolinium-enhanced cardiovascular magnetic resonance in the diagnosis of cardiac sarcoidosis. JACC. 2005;45(10):1683–90.

    Article  PubMed  Google Scholar 

  49. Patel MR, Cawley PJ, Heitner JF. Detection of myocardial damage in patients with sarcoidosis. Circulation. 2009;120(20):1969–77. Prospective study showing late gadolinium enhancement CMR is twice as sensitive for diagnosis of CS in patients with biopsy proven extracardiac sarcoidosis.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Nagai T, Kohsaka S, Okuda S, Anzai T, Asano K, Fukuda K. Incidence and prognostic significance of myocardial late gadolinium enhancement in patients with sarcoidosis without cardiac manifestation. Chest. 2014;146(4):1064–72. Prospective analysis of sixty-one sarcoidosis patients showing that late gadolinium enhancement is present in a subset of biopsy proven sarcoidosis patients without cardiac manifestation.

    Article  PubMed  Google Scholar 

  51. Vignaux O, Dhote R, Duboc D, Blanche P, Dusser D, Weber S, et al. Clinical significance of myocardial magnetic resonance abnormalities in patients with sarcoidosis: a 1 year follow-up study. Chest. 2002;122(6):1895–901.

    Article  PubMed  Google Scholar 

  52. Ise T, Hasegawa T, Morita Y, Yamada N, Funada A, Takahama H, et al. Extensive late gadolinium enhancement on cardiovascular magnetic resonance predicts adverse outcomes and lack of improvement in LV function after steroid therapy in cardiac sarcoidosis. Heart. 2014;100(15):1165–72. Prospective cross-sectional study showing correlation between extensive late gadolinium enhancement and a high incidence of adverse outcomes in CS patients after steroid therapy.

    Article  CAS  PubMed  Google Scholar 

  53. Ando A, Nitta K, Ando I, Sanada S, Katsuda S, Tonami N, et al. Mechanism of gallium 67 accumulation in inflammatory tissue. Eur J Nucl Med. 1990;17(1–2):21–7.

    Article  CAS  PubMed  Google Scholar 

  54. Soejima K, Yada H. The work-up and management of patients with apparent or subclinical cardiac sarcoidosis: with emphasis on the associated heart rhythm abnormalities. J Cardiovasc Electrophysiol. 2009;20(5):578–83.

    Article  PubMed  Google Scholar 

  55. Momose M, Kadoya M, Koshikawa M, Matsushita T, Yamada A. Usefulness of 67Ga SPECT and integrated low-dose CT scanning (SPECT/CT) in the diagnosis of cardiac sarcoidosis. Ann Nucl Med. 2007;21(10):545–51.

    Article  PubMed  Google Scholar 

  56. Le GD, Menad F, Faraggi M, Weinmann P, Battesti JP, Valeyre D. Myocardial sarcoidosis. Clinical value of technetium-99m sestamibi tomoscintigraphy. Chest. 1994;106(6):1675–82.

    Article  Google Scholar 

  57. Hirose Y, Ishida Y, Hayashida K, Maeno M, Takamiya M, Ohmori F, et al. Myocardial involvement in patients with sarcoidosis. An analysis of 75 patients. Clin Nucl Med. 1994;19(6):522–6.

    Article  CAS  PubMed  Google Scholar 

  58. Bulkley BH, Rouleau JR, Whitaker JQ, Strauss HW, Pitt B. The use of 201thallium for myocardial perfusion imaging in sarcoid heart disease. Chest. 1977;72(1):27–32.

    Article  CAS  PubMed  Google Scholar 

  59. Morooka M, Moroi M, Uno K, Ito K, Wu J, Nakagawa T, et al. Long fasting is effective in inhibiting physiological myocardial 18F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis. EJNMMI Res. 2014;4(1):1.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Youssef G, Leung E, Mylonas I, Nery P, Williams K, Wisenberg G, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53(2):241–8. A systemic review and metaanalysis evaluating the accuracy of (18)F-FDG PET for cardiac sarcoidosis diagnosis compared with JMHWG.

    Article  CAS  PubMed  Google Scholar 

  61. Ishimaru S, Tsujino I, Takei T, Tsukamoto E, Sakaue S, Kamigaki M, et al. Focal uptake on 18F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J. 2005;26(15):1538–43.

    Article  PubMed  Google Scholar 

  62. Isiguzo M, Brunken R, Tchou P, Xu M, Culver DA. Metabolism-perfusion imaging to predict disease activity in cardiac sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2011;28(1):50–5.

    CAS  PubMed  Google Scholar 

  63. Langah R, Spicer K, Gebregziabher M, Gordon L. Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis. J Nucl Cardiol. 2009;16(5):801–10.

    Article  PubMed  Google Scholar 

  64. Ohira H, Tsujino I, Sato T, Yoshinaga K, Manabe O, Oyama N, et al. Early detection of cardiac sarcoid lesions with (18)F-fluoro-2-deoxyglucose positron emission tomography. Intern Med. 2011;50(11):1207–9.

    Article  PubMed  Google Scholar 

  65. Okumura W, Iwasaki T, Toyama T, Iso T, Arai M, Oriuchi N, et al. Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis. J Nucl Med. 2004;45(12):1989–98.

    PubMed  Google Scholar 

  66. Tahara N, Tahara A, Nitta Y, Kodama N, Mizoguchi M, Kaida H, et al. Heterogeneous myocardial FDG uptake and the disease activity in cardiac sarcoidosis. JACC Cardiovasc Imaging. 2010;3(12):1219–28.

    Article  PubMed  Google Scholar 

  67. Hamzeh NY, Wamboldt FS, Weinberger HD. Management of cardiac sarcoidosis in the United States: a Delphi study. Chest. 2012;141(1):154–62. A study demonstrating agreement among sarcoid experts in the United States that 18F-FDG PET has a role in the workup of cardiac sarcoidosis.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Meller J, Sahlmann CO, Scheel AK. 18F-FDG PET and PET/CT in fever of unknown origin. J Nucl Med. 2007;48(1):35–45.

    CAS  PubMed  Google Scholar 

  69. Abel ED. Glucose transport in the heart. Front Biosci. 2004;9:201–15.

    Article  CAS  PubMed  Google Scholar 

  70. Soussan M, Brillet PY, Nunes H, Pop G, Ouvrier MJ, Naggara N, et al. Clinical value of a high-fat and low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. J Nucl Cardiol. 2013;20(1):120–7.

    Article  PubMed  Google Scholar 

  71. Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR Am J Roentgenol. 2008;190(2):W151–6.

    Article  PubMed  Google Scholar 

  72. Ito K, Morooka M, Okazaki O, Minaminoto R, Kubota K, Hiroe M. Efficacy of heparin loading during an 18F-FDG PET/CT examination to search for cardiac sarcoidosis activity. Clin Nucl Med. 2013;38(2):128–30.

    Article  PubMed  Google Scholar 

  73. Mc Ardle BA, Leung E, Ohira H, Cocker MS, deKemp RA, DaSilva J, et al. The role of F(18)-fluorodeoxyglucose positron emission tomography in guiding diagnosis and management in patients with known or suspected cardiac sarcoidosis. J Nucl Cardiol. 2013;20(2):297–306.

    Article  CAS  PubMed  Google Scholar 

  74. Tavora F, Cresswell N, Li L, Ripple M, Solomon C, Burke A. Comparison of necropsy findings in patients with sarcoidosis dying suddenly from cardiac sarcoidosis versus dying suddenly from other causes. Am J Cardiol. 2009;104(4):571–7.

    Article  PubMed  Google Scholar 

  75. Yamagishi H, Shirai N, Takagi M, Yoshiyama M, Akioka K, Takeuchi K, et al. Identification of cardiac sarcoidosis with (13)N-NH(3)/(18)F-FDG PET. J Nucl Med. 2003;44(7):1030–6.

    PubMed  Google Scholar 

  76. Mc Ardle BA, Birnie DH, Klein R, de Kemp RA, Leung E, Renaud J, et al. Is there an association between clinical presentation and the location and extent of myocardial involvement of cardiac sarcoidosis as assessed by (1)(8)F-fluorodoexyglucose positron emission tomography? Circ Cardiovasc Imaging. 2013;6(5):617–26.

    Article  PubMed  Google Scholar 

  77. Blankstein R, Osborne M, Naya M, Waller A, Kim CK, Murthy VL, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014;63(4):329–36. Moderate sized study showing that PET perfusion/FDG imaging abnormalities in patients being worked up for Cardiac Sarcoid predict adverse clinical outcomes.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Manabe O, Ohira H, Yoshinaga K, Sato T, Klaipetch A, Oyama-Manabe N, et al. Elevated (18)F-fluorodeoxyglucose uptake in the interventricular septum is associated with atrioventricular block in patients with suspected cardiac involvement sarcoidosis. Eur J Nucl Med Mol Imaging. 2013;40(10):1558–66.

    Article  CAS  PubMed  Google Scholar 

  79. Ahmadian A, Brogan A, Berman J, Sverdlov AL, Mercier G, Mazzini M, et al. Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. J Nucl Cardiol. 2014;21(5):925–39.

    Article  PubMed  Google Scholar 

  80. Ohira H, Birnie D, McArdle B, Leung E, Yoshinaga K, Tsujino I, Sato T, Bernick J, Manabe O, Nishimura M, Tamaki N, Davies RA, Klein R, Guo A, Garrard L, Ruddy T, Chow B, Hessian R, Kingsbury K, Beanlands R, Nery P. Low agreement of 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET) and cardiac magnetic resonance (CMR) in patients with conduction disease due to cardiac sarcoidosis. Circulation. 2013;128:A15942.[abstract](manuscript in submission).

  81. Smid BE, van der Tol L, Cecchi F, Elliott PM, Hughes DA, Linthorst GE, et al. Uncertain diagnosis of Fabry disease: consensus recommendation on diagnosis in adults with left ventricular hypertrophy and genetic variants of unknown significance. Int J Cardiol. 2014;177(2):400–8.

    Article  CAS  PubMed  Google Scholar 

  82. Kampmann C, Linhart A, Baehner F, Palecek T, Wiethoff CM, Miebach E, et al. Onset and progression of the Anderson-Fabry disease related cardiomyopathy. Int J Cardiol. 2008;130(3):367–73.

    Article  PubMed  Google Scholar 

  83. Linhart A, Elliott PM. The heart in Anderson-Fabry disease and other lysosomal storage disorders. Heart. 2007;93(4):528–35.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Wu JC, Ho CY, Skali H, Abichandani R, Wilcox WR, Banikazemi M, et al. Cardiovascular manifestations of Fabry disease: relationships between left ventricular hypertrophy, disease severity, and alpha-galactosidase A activity. Eur Heart J. 2010;31(9):1088–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Niemann M, Breunig F, Beer M, Herrmann S, Strotmann J, Hu K, et al. The right ventricle in Fabry disease: natural history and impact of enzyme replacement therapy. Heart. 2010;96(23):1915–9.

    Article  CAS  PubMed  Google Scholar 

  86. Linhart A, Palecek T, Bultas J, Ferguson JJ, Hrudová J, Karetová D, et al. New insights in cardiac structural changes in patients with Fabry’s disease. Am Heart J. 2000;139(6):1101–8.

    Article  CAS  PubMed  Google Scholar 

  87. Barbey F, Qanadli SD, Juli C, Brakch N, Palacek T, Rizzo E, et al. Aortic remodelling in Fabry disease. Eur Heart J. 2010;31(3):347–53.

    Article  PubMed  Google Scholar 

  88. Goldmann ME, Cantor R, Schwatz MF, Baker M, Desnick RJ. Echocardiographic abnormalities and disease severity in Fabry’s disease. JACC. 1986;7(5):1157–61.

    Article  Google Scholar 

  89. Pieroni M, Chimenti C, Ricci R, Sale P, Russo MA, Frustaci A. Early detection of Fabry cardiomyopathy by tissue Doppler imaging. Circulation. 2003;107:1978–84.

    Article  PubMed  Google Scholar 

  90. Shanks M, Thompson RB, Paterson ID, Putko B, Khan A, Chan A, et al. Systolic and diastolic function assessment in Fabry disease patients using speckle-tracking imaging and comparison with conventional echocardiographic measurements. J Am Soc Echocaridogr. 2013;26(12):1407–14.

    Article  Google Scholar 

  91. Weidemann F, Breunig F, Beer M, Sandstede J, Störk S, Voelker W, et al. The variation of morphological and functional cardiac manifestation in Fabry disease: potential implications for the time course of the disease. Eur Heart J. 2005;26:1221–7.

    Article  PubMed  Google Scholar 

  92. Kramer J, Niemann M, Liu D, Hu K, Machann W, Beer M, et al. Two-dimensional speckle tracking as a non-invasive tool for identification of myocardial fibrosis in Fabry disease. Eur Heart J. 2013;34(21):1587–96.

    Article  PubMed  CAS  Google Scholar 

  93. Weidemann F, Breunig F, Beer M, Sandstede J, Turschner O, Voelker W, et al. Improvement of cardiac function during enzyme replacement therapy in patients with Fabry disease. Circulation. 2003;108(11):1299–301.

    Article  CAS  PubMed  Google Scholar 

  94. Zamorano J, Serra V, Perez de Isla L, Feltes G, Calli A, Barbado FJ, et al. Usefulness of tissue Doppler on early detection of cardiac disease in Fabry patients and potential role of enzyme replacement therapy (ERT) for avoiding progression of disease. Eur J Echocardiogr. 2011;12(9):671–7.

    Article  PubMed  Google Scholar 

  95. Weidemann F, Niemann M, Breunig F, Herrmann S, Beer M, Störk S, et al. Long-term effects of enzyme replacement therapy on Fabry cardiomyopathy: evidence for a better outcome with early treatment. Circulation. 2009;119(4):524–9.

    Article  CAS  PubMed  Google Scholar 

  96. Moon JC, Sachdev B, Elkington AG, McKenna WJ, Mehta A, Pennell DJ, et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J. 2003;24(23):2151–5.

    Article  PubMed  Google Scholar 

  97. Moon JC, Sheppard M, Reed E, Lee P, Elliott PM, Pennell DJ. The histological basis of late gadolinium enhancement cardiovascular magnetic resonance in a patient with Anderson-Fabry disease. J Cardiovasc Magn Reson. 2006;8(3):479–82.

    Article  PubMed  Google Scholar 

  98. Chimenti C, Morgante E, Tanzilli G, Mangieri E, Critelli G, Gaudio C, et al. Angina in Fabry disease reflects coronary small vessel disease. Circ Heart Fail. 2008;1(3):161–9.

    Article  PubMed  Google Scholar 

  99. Elliott PM, Kindler H, Shah JS, Sachdev B, Rimoldi OE, Thaman R, et al. Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with alpha galactosidase A. Heart. 2006;92(3):357–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Tomberli B, Cecchi F, Sciagra R, Berti V, Lisi F, Torricelli F, et al. Coronary microvascular dysfunction is an early feature of cardiac involvement in patients with Anderson-Fabry disease. Eur J Heart Fail. 2013;15(12):1363–73.

    Article  PubMed  Google Scholar 

  101. Kremastinos DT, Farmakis D, Aessopos A, Hahalis G, Hamodraka E, Tsiapras D, et al. Beta-thalassemia cardiomyopathy: history, present considerations, and future perspectives. Circ Heart Fail. 2010;3(3):451–8.

    Article  PubMed  Google Scholar 

  102. Kremastinos DT, Tsiapris DP, Tsetsos GA, Rentoukas EI, Vretou HP, Toutouzas PK. Left ventricular diastolic Doppler characteristics in beta-thalassemia major. Circulation. 1993;88(3):1127–35.

    Article  CAS  PubMed  Google Scholar 

  103. Kremastinos DT, Tsetsos GA, Tsiapris DP, Karavolias GK, Ladis VA, Kattamis CA. Heart failure in beta-thalassemia: a 5-year follow-up study. Am J Med. 2001;111(5):349–54.

    Article  CAS  PubMed  Google Scholar 

  104. Kirk P, Roughton M, Porter JB, Walker JM, Tanner MA, Patel J, et al. Cardiac T2* magnetic resonance for prediction of cardiac complications in thalassemia major. Circulation. 2009;120(20):1961–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001;22(23):2171–9. Demonstration that myocardial iron deposition could be quantified using T2* relaxometry and predicted need for treatment.

    Article  CAS  PubMed  Google Scholar 

  106. Anderson LJ, Wonke B, Prescott E, Holden S, Walker JM, Pennell DJ. Comparison of effects of oral deferiprone and subcutaneous desferrioxamine on myocardial iron concentrations and ventricular function in beta-thalassaemia. Lancet. 2002;360(9332):516–20.

    Article  CAS  PubMed  Google Scholar 

  107. Tanner MA, Galanello R, Dessi C, Smith GC, Westwood MA, Agus A, et al. A randomized, placebo-controlled, double-blind trial of the effect of combined therapy with deferoxamine and deferiprone on myocardial iron in thalassemia major using cardiovascular magnetic resonance. Circulation. 2007;115(14):1876–84.

    Article  CAS  PubMed  Google Scholar 

  108. Pennell DJ, Porter JB, Cappellini MD, Chan LL, El-Beshlawy A, Aydinok Y, et al. Continued improvement in myocardial T2* over two years of deferasirox therapy in beta-thalassemia major patients with cardiac iron overload. Haematologica. 2011;96(1):48–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

James Lambert, Siok Ping Lim, Girish Dwivedi, and Sharon Chih declare that they have no conflict of interest.

Rob Beanlands is a consultant to Lantheus Medical Imaging, Jubilant DRAXImage, and has grant/grants pending with Lantheus Medical Imaging, Jubilant DRAXImage, and GE Healthcare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclosures

RSB is a career investigator supported by the Heart and Stroke Foundation of Ontario, the University of Ottawa Heart Institute (UOHI) Vered Chair in Cardiology, and a Tier 1 University of Ottawa Chair in Cardiovascular Research. RSB is a consultant for and has received grant funding from Jubilant DRAXImage, Lantheus Medical Imaging, and General Electric Healthcare. PSL is supported by UOHI Vered-Beanlands Endowed Research Fellowship in Cardiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon Chih.

Additional information

This article is part of the Topical Collection on Molecular Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambert, J., Lim, S.P., Dwivedi, G. et al. Cardiac Imaging of Infiltrative Cardiomyopathies. Curr Cardiovasc Imaging Rep 8, 16 (2015). https://doi.org/10.1007/s12410-015-9330-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-015-9330-4

Keywords

Navigation