Skip to main content

Infiltrative/Storage Cardiomyopathies: Clinical Assessment and Imaging in Diagnosis and Patient Management

  • Chapter
  • First Online:
Clinical Echocardiography and Other Imaging Techniques in Cardiomyopathies

Abstract

Infiltrative/storage cardiomyopathies (CMP) are diseases characterized by the deposition of pathological substances in the heart muscle. In particular, the term infiltrative refers to intercellular infiltration, whereas storage refers to intracellular deposition within the myocardium. As the infiltration/storage usually involves multiple organs, these CMP should be considered part of a systemic disorder. Despite variable etiology and pathological mechanisms, this group of CMP shares some common features, such as myocardial hypertrophy and progressive myocardial stiffness, with diastolic and systolic dysfunction. Heart failure is the main clinical manifestation, but arrhythmias and conduction defects are common. Accurate clinical evaluation is therefore crucial for correctly targeting further examinations. Moreover, cardiac imaging plays a major role not only in differential diagnosis but also in prognostic stratification. The impact of identifying cardiac involvement and the underlying pathology reflects upon treatment and prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rapezzi C, Arbustini E, Caforio AL et al (2013) Diagnostic work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC Working Group on Myocardial and Pericardial Diseases. Eur Heart J 34:1448–1458

    PubMed  Google Scholar 

  2. Klein AL, Oh JK, Miller FA, Seward JB, Tajik AJ (1988) Two-dimensional and Doppler echocardiographic assessment of infiltrative cardiomyopathy. J Am Coll Cardiol 1:48–59

    CAS  Google Scholar 

  3. Falk RH (2005) Diagnosis and management of the cardiac amyloidoses. Circulation 112:2047–2060

    PubMed  Google Scholar 

  4. Shah KB, Inoue Y, Mehra MR (2006) Amyloidosis and the heart. A comprehensive review. Arch Intern Med 166:1805–1813

    CAS  PubMed  Google Scholar 

  5. Kyle RA, Linos A, Beard CM et al (1992) Incidence and natural history of primary systemic amyloidosis in Olmsted County, Minnesota, 1950 through 1989. Blood 79:1817

    CAS  PubMed  Google Scholar 

  6. Jaccard A, Moreau P, Leblond V et al (2007) High-dose melphalan versus melphalan plus dexamethasone for AL amyloidosis. N Engl J Med 357:1083–1093

    CAS  PubMed  Google Scholar 

  7. Finocchiaro G, Pinamonti B, Merlo M et al (2013) Focus on cardiac amyloidosis: a single-center experience with a long-term follow-up. J Cardiovasc Med (Hagerstown) 14:281–288

    CAS  Google Scholar 

  8. Rapezzi C, Merlini G, Quarta CC, Riva L, Longhi S, Leone O, Salvi F, Ciliberti P, Pastorelli F, Biagini E, Coccolo F, Cooke RM, Bacchi-Reggiani L, Sangiorgi D, Ferlini A, Cavo M, Zamagni E, Fonte ML, Palladini G, Salinaro F, Musca F, Obici L, Branzi A, Perlini S (2009) Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation 120:1203–1212

    CAS  PubMed  Google Scholar 

  9. Rahman JE, Heleou EF, Gelzer-Bell R et al (2004) Noninvasive diagnosis of biopsy-proven cardiac amyloidosis. J Am Coll Cardiol 43:410

    PubMed  Google Scholar 

  10. Merlini G, Wechalekar AD, Palladini G (2013) Systemic light chain amyloidosis: an update for treating physicians. Blood 121(26):5124–5130. doi:10.1182/blood-2013-01-453001

    CAS  PubMed  Google Scholar 

  11. Kyle RA, Greipp PR (1983) Amyloidosis (AL). Clinical and laboratory features in 229 cases. Mayo Clin Proc 58(10):665–683

    CAS  PubMed  Google Scholar 

  12. Picano E, Pinamonti B, Ferdeghini EM et al (1991) Two-dimensional echocardiography in myocardial amyloidosis. Echocardiography 8:253–258

    CAS  PubMed  Google Scholar 

  13. Hongo M, Kono J, Yamada H et al (1991) doppler echocardiographic assessment of left ventricular diastolic filling in patients with amyloid heart disease. J Cardiol 21:391–401

    CAS  PubMed  Google Scholar 

  14. Liu D, Niemann M, Hu K, Herrmann S, Stork S, Knop S, Ertl G, Weidemann F (2011) Echocardiographic evaluation of systolic and diastolic function in patients with cardiac amyloidosis. Am J Cardiol 108(4):591–598. doi:10.1016/j.amjcard.2011.03.092

    PubMed  Google Scholar 

  15. Falk RH, Plehn JF, Deering T, Schick EC Jr, Boinay P, Rubinow A, Skinner M, Cohen AS (1987) Sensitivity and specificity of the echocardiographic features of cardiac amyloidosis. Am J Cardiol 59(5):418–422

    CAS  PubMed  Google Scholar 

  16. Murtagh B, Hammill SC, Gertz MA et al (2005) Electrocardiographic findings in primary systemic amyloidosis and biopsy-proven cardiac involvement. Am J Cardiol 95:535–537

    PubMed  Google Scholar 

  17. Carroll JD, Gaasch WH, McAdam KP (1982) Amyloid cardiomyopathy: characterization by a distinctive voltage/mass relation. Am J Cardiol 49:9–13

    CAS  PubMed  Google Scholar 

  18. Tsai SB, Seldin DC, Wu H, O’Hara C, Ruberg FL, Sanchorawala V (2011) Myocardial infarction with “clean coronaries” caused by amyloid light-chain AL amyloidosis: a case report and literature review. Amyloid 18(3):160–164. doi:10.3109/13506129.2011.571319

    PubMed  Google Scholar 

  19. Selvanayagam JB, Hawkins PN, Paul B, Myerson SG, Neubauer S (2007) Evaluation and management of the cardiac amyloidosis. J Am Coll Cardiol 50(22):2101–2110. doi:10.1016/j.jacc.2007.08.028

    CAS  PubMed  Google Scholar 

  20. Dubrey SW, Hawkins PN, Falk RH (2011) Amyloid diseases of the heart: assessment, diagnosis, and referral. Heart 97(1):75–84. doi:10.1136/hrt.2009.190405

    CAS  PubMed  Google Scholar 

  21. Ghio S, Perlini S, Palladini G, Marsan NA, Faggiano G, Vezzoli M, Klersy C, Campana C, Merlini G, Tavazzi L (2007) Importance of the echocardiographic evaluation of right ventricular function in patients with AL amyloidosis. Eur J Heart Fail 9(8):808–813. doi:10.1016/j.ejheart.2007.05.006

    PubMed  Google Scholar 

  22. Klein AL, Hatle LK, Burstow DJ, Seward JB, Kyle RA, Bailey KR, Luscher TF, Gertz MA, Tajik AJ (1989) Doppler characterization of left ventricular diastolic function in cardiac amyloidosis. J Am Coll Cardiol 13(5):1017–1026

    CAS  PubMed  Google Scholar 

  23. Koyama J, Ray-Sequin PA, Davidoff R, Falk RH (2002) Usefulness of pulsed tissue Doppler imaging for evaluating systolic and diastolic left ventricular function in patients with AL (primary) amyloidosis. Am J Cardiol 89(9):1067–1071

    PubMed  Google Scholar 

  24. Koyama J, Ray-Sequin PA, Falk RH (2003) Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation 107(19):2446–2452. doi:10.1161/01.CIR.0000068313.67758.4F

    PubMed  Google Scholar 

  25. Bellavia D, Pellikka PA, Dispenzieri A, Scott CG, Al-Zahrani GB, Grogan M, Pitrolo F, Oh JK, Miller FA Jr (2012) Comparison of right ventricular longitudinal strain imaging, tricuspid annular plane systolic excursion, and cardiac biomarkers for early diagnosis of cardiac involvement and risk stratification in primary systematic (AL) amyloidosis: a 5-year cohort study. Eur Heart J Cardiovasc Imaging 13(8):680–689. doi:10.1093/ehjci/jes009

    PubMed  Google Scholar 

  26. Garcia MJ, Rodriguez L, Ares M, Griffin BP, Thomas JD, Klein AL (1996) Differentiation of constrictive pericarditis from restrictive cardiomyopathy: assessment of left ventricular diastolic velocities in longitudinal axis by Doppler tissue imaging. J Am Coll Cardiol 27(1):108–114. doi:10.1016/0735-1097(95)00434-3

    CAS  PubMed  Google Scholar 

  27. Sun JP, Stewart WJ, Yang XS, Donnell RO, Leon AR, Felner JM, Thomas JD, Merlino JD (2009) Differentiation of hypertrophic cardiomyopathy and cardiac amyloidosis from other causes of ventricular wall thickening by two-dimensional strain imaging echocardiography. Am J Cardiol 103(3):411–415. doi:10.1016/j.amjcard.2008.09.102

    PubMed  Google Scholar 

  28. Phelan D, Collier P, Thavendiranathan P, Popovic ZB, Hanna M, Plana JC, Marwick TH, Thomas JD (2012) Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 98(19):1442–1448. doi:10.1136/heartjnl-2012-302353

    PubMed  Google Scholar 

  29. Baccouche H, Maunz M, Beck T, Gaa E, Banzhaf M, Knayer U, Fogarassy P, Beyer M (2012) Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography. Echocardiography 29(6):668–677. doi:10.1111/j.1540-8175.2012.01680.x

    PubMed  Google Scholar 

  30. Saito K, Okura H, Watanabe N, Hayashida A, Obase K, Imai K, Maehama T, Kawamoto T, Neishi Y, Yoshida K (2009) Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in normal adults: comparison of three-dimensional and two-dimensional approaches. J Am Soc Echocardiogr 22(9):1025–1030. doi:10.1016/j.echo.2009.05.021

    PubMed  Google Scholar 

  31. Sharma N, Howlett J (2013) Current state of cardiac amyloidosis. Curr Opin Cardiol 28:242–248

    PubMed  Google Scholar 

  32. Quarta CC, Kruger JL, Falk RH (2012) Cardiac amyloidosis. Circulation 126:e178–e182

    PubMed  Google Scholar 

  33. Fattori R, Rocchi G, Celletti F, Bertaccini P, Rapezzi C, Gavelli G (1998) Contribution of magnetic resonance imaging in the differential diagnosis of cardiac amyloidosis and symmetric hypertrophic cardiomyopathy. Am Heart J 136:824–830

    CAS  PubMed  Google Scholar 

  34. Syed IS, Glockner JF, Feng D, Araoz PA, Martinez MW, Edwards WD, Gertz MA, Dispenzieri A, Oh JK, Bellavia D, Tajik AJ, Grogan M (2010) Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging 3:155–164

    PubMed  Google Scholar 

  35. Austin BA, Tang WH, Rodriguez ER, Tan C, Flamm SD, Taylor DO, Starling RC, Desai MY (2009) Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging 2:1369–1377

    PubMed  Google Scholar 

  36. Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, Whelan CJ, Myerson SG, Robson MD, Hawkins PN, Neubauer S, Moon JC (2013) Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 6:488–497

    PubMed  Google Scholar 

  37. Banypersad SM, Sado DM, Flett AS, Gibbs SD, Pinney JH, Maestrini V, Cox AT, Fontana M, Whelan CJ, Wechalekar AD, Hawkins PN, Moon JC (2013) Quantification of myocardial extracellular volume fraction in systemic al amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 6:34–39

    PubMed  Google Scholar 

  38. Aprile C, Marinone G, Saponaro R, Bonino C, Merlini G (1995) Cardiac and pleuropulmonary AL amyloid imaging with technetium-99m labelled aprotinin. Eur J Nucl Med 22:1393–1401

    CAS  PubMed  Google Scholar 

  39. Han S, Chong V, Murray T, McDonagh T, Hunter J, Poon FW, Gray HW, Neilly JB (2007) Preliminary experience of 99mtc-aprotinin scintigraphy in amyloidosis. Eur J Haematol 79:494–500

    PubMed  Google Scholar 

  40. Schaadt BK, Hendel HW, Gimsing P, Jonsson V, Pedersen H, Hesse B (2003) 99mtc-aprotinin scintigraphy in amyloidosis. J Nucl Med 44:177–183

    PubMed  Google Scholar 

  41. Karp K, Naslund U, Backman C, Eriksson P (1987) Technetium-99m pyrophosphate single-photon emission computed tomography of the heart in familial amyloid polyneuropathy. Int J Cardiol 14:365–369

    CAS  PubMed  Google Scholar 

  42. Puille M, Altland K, Linke RP, Steen-Muller MK, Kiett R, Steiner D, Bauer R (2002) 99mtc-dpd scintigraphy in transthyretin-related familial amyloidotic polyneuropathy. Eur J Nucl Med Mol Imaging 29:376–379

    CAS  PubMed  Google Scholar 

  43. Perugini E, Guidalotti PL, Salvi F, Cooke RM, Pettinato C, Riva L, Leone O, Farsad M, Ciliberti P, Bacchi-Reggiani L, Fallani F, Branzi A, Rapezzi C (2005) Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mtc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol 46:1076–1084

    PubMed  Google Scholar 

  44. Rapezzi C, Guidalotti P, Salvi F, Riva L, Perugini E (2008) Usefulness of 99mtc-dpd scintigraphy in cardiac amyloidosis. J Am Coll Cardiol 51:1509–1510; author reply 1510

    PubMed  Google Scholar 

  45. Bokhari S, Castano A, Pozniakoff T, Deslisle S, Latif F, Maurer MS (2013) (99m)tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 6:195–201

    PubMed  PubMed Central  Google Scholar 

  46. Minutoli F, Di Bella G, Mazzeo A, Donato R, Russo M, Scribano E, Baldari S (2013) Comparison between (99m)tc-diphosphonate imaging and mri with late gadolinium enhancement in evaluating cardiac involvement in patients with transthyretin familial amyloid polyneuropathy. AJR Am J Roentgenol 200:W256–W265

    PubMed  Google Scholar 

  47. Kodama K, Hamada M, Kuwahara T, Nakamura M, Shigematsu Y, Hiwada K, Iwata T, Hoshii Y, Ishihara T (1999) Rest-redistribution thallium-201 myocardial scintigraphic study in cardiac amyloidosis. Int J Card Imaging 15:371–378

    CAS  PubMed  Google Scholar 

  48. Tanaka M, Hongo M, Kinoshita O, Takabayashi Y, Fujii T, Yazaki Y, Isobe M, Sekiguchi M (1997) Iodine-123 metaiodobenzylguanidine scintigraphic assessment of myocardial sympathetic innervation in patients with familial amyloid polyneuropathy. J Am Coll Cardiol 29:168–174

    CAS  PubMed  Google Scholar 

  49. Delahaye N, Dinanian S, Slama MS, Mzabi H, Samuel D, Adams D, Merlet P, Le Guludec D (1999) Cardiac sympathetic denervation in familial amyloid polyneuropathy assessed by iodine-123 metaiodobenzylguanidine scintigraphy and heart rate variability. Eur J Nucl Med 26:416–424

    CAS  PubMed  Google Scholar 

  50. Hongo M, Urushibata K, Kai R, Takahashi W, Koizumi T, Uchikawa S, Imamura H, Kinoshita O, Owa M, Fujii T (2002) Iodine-123 metaiodobenzylguanidine scintigraphic analysis of myocardial sympathetic innervation in patients with al (primary) amyloidosis. Am Heart J 144:122–129

    CAS  PubMed  Google Scholar 

  51. Antoni G, Lubberink M, Estrada S, Axelsson J, Carlson K, Lindsjo L, Kero T, Langstrom B, Granstam SO, Rosengren S, Vedin O, Wassberg C, Wikstrom G, Westermark P, Sorensen J (2013) In vivo visualization of amyloid deposits in the heart with 11c-pib and pet. J Nucl Med 54:213–220

    CAS  PubMed  Google Scholar 

  52. Klein AL, Hatle LK, Taliercio CP, Oh JK, Kyle RA, Gertz MA, Bailey KR, Seward JB, Tajik AJ (1991) Prognostic significance of Doppler measures of diastolic function in cardiac amyloidosis. A Doppler echocardiography study. Circulation 83(3):808–816

    CAS  PubMed  Google Scholar 

  53. Mohty D, Pibarot P, Dumesnil JG, Darodes N, Lavergne D, Echahidi N, Virot P, Bordessoule D, Jaccard A (2011) Left atrial size is an independent predictor of overall survival in patients with primary systemic amyloidosis. Arch Cardiovasc Dis 104(12):611–618. doi:10.1016/j.acvd.2011.10.004

    PubMed  Google Scholar 

  54. Cappelli F, Porciani MC, Bergesio F, Perlini S, Attana P, Moggi Pignone A, Salinaro F, Musca F, Padeletti L, Perfetto F (2012) Right ventricular function in AL amyloidosis: characteristics and prognostic implication. Eur Heart J Cardiovasc Imaging 13(5):416–422. doi:10.1093/ejechocard/jer289

    PubMed  Google Scholar 

  55. Buss SJ, Emami M, Mereles D, Korosoglou G, Kristen AV, Voss A, Schellberg D, Zugck C, Galuschky C, Giannitsis E, Hegenbart U, Ho AD, Katus HA, Schonland SO, Hardt SE (2012) Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers. J Am Coll Cardiol 60(12):1067–1076. doi:10.1016/j.jacc.2012.04.043

    PubMed  Google Scholar 

  56. Bellavia D, Pellikka PA, Al-Zahrani GB, Abraham TP, Dispenzieri A, Miyazaki C, Lacy M, Scott CG, Oh JK, Miller FA Jr (2010) Independent predictors of survival in primary systemic (Al) amyloidosis, including cardiac biomarkers and left ventricular strain imaging: an observational cohort study. J Am Soc Echocardiogr 23(6):643–652. doi:10.1016/j.echo.2010.03.027

    PubMed  PubMed Central  Google Scholar 

  57. Ruberg FL, Appelbaum E, Davidoff R, Ozonoff A, Kissinger KV, Harrigan C, Skinner M, Manning WJ (2009) Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in light-chain cardiac amyloidosis. Am J Cardiol 103(4):544–549. doi:10.1016/j.amjcard.2008.09.105

    PubMed  PubMed Central  Google Scholar 

  58. Finocchiaro G, Merlo M, Pinamonti B, Barbati G, Santarossa E, Doimo S, Bussani R, Sinagra G (2013) Long term survival in patients with cardiac amyloidosis. Prevalence and characterisation during follow-up. Heart Lung Circ 22(8):647–654. doi:10.1016/j.hlc.2013.01.010

    PubMed  Google Scholar 

  59. Brenner DA, Jain M, Pimentel DR, Wang B, Connors LH, Skinner M, Apstein CS, Liao R (2004) Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res 94(8):1008–1010. doi:10.1161/01.RES.0000126569.75419.74

    CAS  PubMed  Google Scholar 

  60. Ng B, Connors LH, Davidoff R, Skinner M, Falk RH (2005) Senile systemic amyloidosis presenting with heart failure: a comparison with light chain-associated amyloidosis. Arch Intern Med 165(12):1425–1429. doi:10.1001/archinte.165.12.1425

    PubMed  Google Scholar 

  61. Chapelon-Abric C, de Zuttere D, Duhaut P et al (2004) Cardiac sarcoidosis: a retrospective study of 41 cases. Medicine (Baltimore) 83:315–334

    Google Scholar 

  62. Silverman KJ, Hutchins GM, Bulkley BH (1978) Cardiac sarcoid: a clinicopathologic study of 84 unselected patients with systemic sarcoidosis. Circulation 58:1204–1211

    CAS  PubMed  Google Scholar 

  63. Roberts WC, McAllister HA Jr, Ferrans VJ (1977) Sarcoidosis of the heart. A clinicopathologic study of 35 necropsy patients (group 1) and review of 78 previously described necropsy patients (group 11). Am J Med 63:86–108

    CAS  PubMed  Google Scholar 

  64. Kim JS, Jusdson MA, Donnino R et al (2009) Cardiac sarcoidosis. Am Heart J 157:9–21

    CAS  PubMed  Google Scholar 

  65. Bargout R, Kelly RF (2004) Sarcoid heart disease: clinical course and treatment. Int J Cardiol 97:173–182

    PubMed  Google Scholar 

  66. Dubrey SW, Falk RH (2010) Diagnosis and management of cardiac sarcoidosis. Prog Cardiovasc Dis 52(4):336–346. doi:10.1016/j.pcad.2009.11.010

    PubMed  Google Scholar 

  67. Seward JB, Casaclang-Verzosa G (2010) Infiltrative cardiovascular diseases: cardiomyopathies that look alike. J Am Coll Cardiol 55(17):1769–1779. doi:10.1016/j.jacc.2009.12.040

    PubMed  Google Scholar 

  68. Uemura A, Morimoto S, Kato Y, Hiramitsu S, Ohtsuki M, Kato S, Sugiura A, Miyagishima K, Iwase M, Hishida H (2005) Relationship between basal thinning of the interventricular septum and atrioventricular block in patients with cardiac sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 22(1):63–65

    PubMed  Google Scholar 

  69. Sun BJ, Lee PH, Choi HO et al (2011) Prevalence of echocardiographic features suggesting cardiac sarcoidosis in patients with pacemaker or implantable cardiac defibrillators. Korean Circ J 41:313–320

    PubMed  PubMed Central  Google Scholar 

  70. Baughman RP (2007) Pulmonary hypertension associated with sarcoidosis. Arthritis Res Ther 9(Suppl 2):S8. doi:10.1186/ar2192

    PubMed  PubMed Central  Google Scholar 

  71. Aggeli C, Felekos I, Tousoulis D, Gialafos E, Rapti A, Stefanadis C (2013) Myocardial mechanics for the early detection of cardiac sarcoidosis. Int J Cardiol. doi:10.1016/j.ijcard.2013.07.010

    Google Scholar 

  72. Galati G, Leone O, Rapezzi C (2014) The difficult diagnosis of isolated cardiac sarcoidosis: usefulness of an integrated MRI and PET approach. Heart 100:89–90

    PubMed  Google Scholar 

  73. Smedema JP, Snoep G, van Kroonenburgh MP, van Geuns RJ, Dassen WR, Gorgels AP, Crijns HJ (2005) Evaluation of the accuracy of gadolinium-enhanced cardiovascular magnetic resonance in the diagnosis of cardiac sarcoidosis. J Am Coll Cardiol 45:1683–1690

    PubMed  Google Scholar 

  74. Le Guludec D, Menad F, Faraggi M, Weinmann P, Battesti JP, Valeyre D (1994) Myocardial sarcoidosis. Clinical value of technetium-99m sestamibi tomoscintigraphy. Chest 106:1675–1682

    PubMed  Google Scholar 

  75. Okayama K, Kurata C, Tawarahara K, Wakabayashi Y, Chida K, Sato A (1995) Diagnostic and prognostic value of myocardial scintigraphy with thallium-201 and gallium-67 in cardiac sarcoidosis. Chest 107:330–334

    CAS  PubMed  Google Scholar 

  76. Eguchi M, Tsuchihashi K, Hotta D, Hashimoto A, Sasao H, Yuda S, Nakata T, Shijubou N, Abe S, Shimamoto K (2000) Technetium-99m sestamibi/tetrofosmin myocardial perfusion scanning in cardiac and noncardiac sarcoidosis. Cardiology 94:193–199

    CAS  PubMed  Google Scholar 

  77. Yamagishi H, Shirai N, Takagi M, Yoshiyama M, Akioka K, Takeuchi K, Yoshikawa J (2003) Identification of cardiac sarcoidosis with (13)n-nh(3)/(18)f-fdg pet. J Nucl Med 44:1030–1036

    PubMed  Google Scholar 

  78. Ishimaru S, Tsujino I, Takei T, Tsukamoto E, Sakaue S, Kamigaki M, Ito N, Ohira H, Ikeda D, Tamaki N, Nishimura M (2005) Focal uptake on 18f-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J 26:1538–1543

    PubMed  Google Scholar 

  79. Tahara N, Tahara A, Nitta Y, Kodama N, Mizoguchi M, Kaida H, Baba K, Ishibashi M, Hayabuchi N, Narula J, Imaizumi T (2010) Heterogeneous myocardial fdg uptake and the disease activity in cardiac sarcoidosis. JACC Cardiovasc Imaging 3:1219–1228

    PubMed  Google Scholar 

  80. Youssef G, Leung E, Mylonas I, Nery P, Williams K, Wisenberg G, Gulenchyn KY, Dekemp RA, Dasilva J, Birnie D, Wells GA, Beanlands RS (2012) The use of 18f-fdg pet in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med 53:241–248

    CAS  PubMed  Google Scholar 

  81. Chen S, Bokhari S (2011) Diagnosis of cardiac sarcoidosis through mismatched defects seen on n-13 nh3/f-18 fdg cardiac pet. Clin Nucl Med 36:1156–1157

    PubMed  Google Scholar 

  82. Radulescu B, Imperiale A, Germain P, Ohlmann P (2010) Severe ventricular arrhythmias in a patient with cardiac sarcoidosis: Insights from mri and pet imaging and importance of early corticosteroid therapy. Eur Heart J 31:400

    PubMed  Google Scholar 

  83. Blankstein R, Osborne M, Naya M, Waller A, Kim CK, Murthy VL, Kazemian P, Kwong RY, Tokuda M, Skali H, Padera R, Hainer J, Stevenson WG, Dorbala S, Di Carli MF (2013) Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 63:329–336

    PubMed  Google Scholar 

  84. Mc Ardle BA, Birnie DH, Klein R, de Kemp RA, Leung E, Renaud J, DaSilva J, Wells GA, Beanlands RS, Nery PB (2013) Is there an association between clinical presentation and the location and extent of myocardial involvement of cardiac sarcoidosis as assessed by (1)(8)f- fluorodoexyglucose positron emission tomography? Circ Cardiovasc Imaging 6:617–626

    PubMed  Google Scholar 

  85. Patel MR, Cawley PJ, Heitner JF, Klem I, Parker MA, Jaroudi WA, Meine TJ, White JB, Elliott MD, Kim HW, Judd RM, Kim RJ (2009) Detection of myocardial damage in patients with sarcoidosis. Circulation 120(20):1969–1977. doi:10.1161/CIRCULATIONAHA.109.851352

    PubMed  PubMed Central  Google Scholar 

  86. Oliveira GH, Seward JB, Tsang TS et al (2005) Echocardiographic findings in patients with Wegener granulomatosis. Mayo Clin Proc 80:1435–1440

    PubMed  Google Scholar 

  87. Miszalski-Jamka T, Szczeklik W, Sokołowska B et al (2011) Cardiac involvement in Wegener’s granulomatosis resistant to induction therapy. Eur Radiol 21:2297–2304

    PubMed  PubMed Central  Google Scholar 

  88. Miszalski-Jamka T, Szczeklik W, Nycz K, Sokolowska B, Gorka J, Bury K, Musial J (2012) Two-dimensional speckle-tracking echocardiography reveals systolic abnormalities in granulomatosis with polyangiitis (Wegener’s). Echocardiography 29(7):803–809. doi:10.1111/j.1540-8175.2012.01699.x

    PubMed  Google Scholar 

  89. Miguel CE, Bestetti RB (2011) Primary cardiac lymphoma. Int J Cardiol 149:358–363

    PubMed  Google Scholar 

  90. Lee GY, Kim WS, Ko YK et al (2013) Primary cardiac lymphoma mimicking infiltrative cardiomyopathy. Eur J Heart Fail 15:589–591

    PubMed  Google Scholar 

  91. Cooper LT, Baughman KL, Feldman AM et al (2007) The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Circulation 116:2216–2233

    PubMed  Google Scholar 

  92. Linhart A, Elliott PM (2007) The heart in Anderson-Fabry disease and other lysosomal storage disorders. Heart 93:528–535. doi:10.1136/hrt.2005.063818

    PubMed  PubMed Central  Google Scholar 

  93. Zarate YA, Hopkin RJ (2008) Lysosomal storage disease 3. Fabry’s disease. Lancet 372:1427–1435

    CAS  PubMed  Google Scholar 

  94. Schiffmann R, Warnock DG, Banikazemi M et al (2009) Fabry disease: progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol Dial Transplant 24:2102–2111

    PubMed  PubMed Central  Google Scholar 

  95. Colucci WS, Lorell BH, Schoen FJ et al (1982) Hypertrophic obstructive cardiomyopathy due to Fabry’s disease. N Engl J Med 307:926–928

    CAS  PubMed  Google Scholar 

  96. Sachdev B, Takenaka T, Teraguchi H et al (2002) Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation 105:1407–1411

    CAS  PubMed  Google Scholar 

  97. Monserrat L, Gimeno-Blanes JR, Marin F et al (2007) Prevalence of Fabry disease in a cohort of 508 unrelated patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 50:2399–2403

    PubMed  Google Scholar 

  98. Elliott P, Baker R, Pasquale F et al (2011) Prevalence of Anderson-Fabry disease in patients with hypertrophic cardiomyopathy: the European Anderson-Fabry disease survey. Heart 97:1957–1960

    PubMed  Google Scholar 

  99. Linhart A, Palecek T, Bultas J et al (2000) New insights in cardiac structural changes in patients with Fabry’s disease. Am Heart J 139:1101–1108

    CAS  PubMed  Google Scholar 

  100. Kampmann C, Linhart A, Baehner F, Palecek T, Wiethoff CM, Miebach E, Whybra C, Gal A, Bultas J, Beck M (2008) Onset and progression of the Anderson-Fabry disease related cardiomyopathy. Int J Cardiol 130(3):367–373. doi:10.1016/j.ijcard.2008.03.007

    PubMed  Google Scholar 

  101. Calcagnino M, O’Mahony C, Coats C et al (2011) Exercise-induced left ventricular outflow tract obstruction in symptomatic patients with Anderson-Fabry disease. J Am Coll Cardiol 58:88–89

    PubMed  Google Scholar 

  102. Shah JS, Lee P, Hughes D et al (2005) The natural history of left ventricular systolic function in Anderson-Fabry disease. Heart 91:533–534

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Palecek T, Dostalova G, Kuchynka P, Karetova D, Bultas J, Elleder M, Linhart A (2008) Right ventricular involvement in Fabry disease. J Am Soc Echocardiogr 21(11):1265–1268. doi:10.1016/j.echo.2008.09.002

    PubMed  Google Scholar 

  104. Niemann M, Breunig F, Beer M, Herrmann S, Strotmann J, Hu K, Emmert A, Voelker W, Ertl G, Wanner C, Weidemann F (2010) The right ventricle in Fabry disease: natural history and impact of enzyme replacement therapy. Heart 96(23):1915–1919. doi:10.1136/hrt.2010.204586

    CAS  PubMed  Google Scholar 

  105. Barbey F, Qanadli SD, Juli C, Brakch N, Palacek T, Rizzo E, Jeanrenaud X, Eckhardt B, Linhart A (2010) Aortic remodelling in Fabry disease. Eur Heart J 31(3):347–353. doi:10.1093/eurheartj/ehp426

    PubMed  Google Scholar 

  106. Pieroni M, Chimenti C, De Cobelli F et al (2006) Fabry’s disease cardiomyopathy: echocardiographic detection of endomyocardial glycosphingolipid compartmentalization. J Am Coll Cardiol 47:1663–1671

    PubMed  Google Scholar 

  107. Mundigler G, Gaggi M, Heinze G et al (2011) The endocardial binary appearance (‘binary sign’) is un unreliable marker for echocardiographic detection of Fabry disease in patients with left ventricular hypertrophy. Eur J Echocardiogr 12:744–749

    PubMed  Google Scholar 

  108. Niemann M, Breunig F, Beer M, Hu K, Liu D, Emmert A, Herrmann S, Ertl G, Wanner C, Takenaka T, Tei C, Weidemann F (2011) Tei index in fabry disease. J Am Soc Echocardiogr 24(9):1026–1032. doi:10.1016/j.echo.2011.05.021

    PubMed  Google Scholar 

  109. Pieroni M, Chimenti C, Ricci R, Sale P, Russo MA, Frustaci A (2003) Early detection of Fabry cardiomyopathy by tissue Doppler imaging. Circulation 107(15):1978–1984. doi:10.1161/01.CIR.0000061952.27445.A0

    PubMed  Google Scholar 

  110. Gruner C, Verocai F, Carasso S, Vannan MA, Jamorski M, Clarke JT, Care M, Iwanochko RM, Rakowski H (2012) Systolic myocardial mechanics in patients with Anderson-Fabry disease with and without left ventricular hypertrophy and in comparison to nonobstructive hypertrophic cardiomyopathy. Echocardiography 29(7):810–817. doi:10.1111/j.1540-8175.2012.01704.x

    PubMed  Google Scholar 

  111. Weidemann F, Breunig F, Beer M, Sandstede J, Stork S, Voelker W, Ertl G, Knoll A, Wanner C, Strotmann JM (2005) The variation of morphological and functional cardiac manifestation in Fabry disease: potential implications for the time course of the disease. Eur Heart J 26(12):1221–1227. doi:10.1093/eurheartj/ehi143

    PubMed  Google Scholar 

  112. Weidemann F, Niemann M, Herrmann S, Kung M, Stork S, Waller C, Beer M, Breunig F, Wanner C, Voelker W, Ertl G, Bijnens B, Strotmann JM (2007) A new echocardiographic approach for the detection of non-ischaemic fibrosis in hypertrophic myocardium. Eur Heart J 28(24):3020–3026. doi:10.1093/eurheartj/ehm454

    PubMed  Google Scholar 

  113. Kramer J, Niemann M, Liu D, Hu K, Machann W, Beer M, Wanner C, Ertl G, Weidemann F (2013) Two-dimensional speckle tracking as a non-invasive tool for identification of myocardial fibrosis in Fabry disease. Eur Heart J 34(21):1587–1596. doi:10.1093/eurheartj/eht098

    PubMed  Google Scholar 

  114. Weidemann F, Niemann M, Breunig F, Herrmann S, Beer M, Stork S, Voelker W, Ertl G, Wanner C, Strotmann J (2009) Long-term effects of enzyme replacement therapy on fabry cardiomyopathy: evidence for a better outcome with early treatment. Circulation 119(4):524–529. doi:10.1161/CIRCULATIONAHA.108.794529

    CAS  PubMed  Google Scholar 

  115. Yousef Z, Elliott PM, Cecchi F, Escoubet B, Linhart A, Monserrat L, Namdar M, Weidemann F (2013) Left ventricular hypertrophy in fabry disease: a practical approach to diagnosis. Eur Heart J 34:802–808

    PubMed  PubMed Central  Google Scholar 

  116. Koeppe S, Neubauer H, Breunig F et al (2012) MR-based analysis of regional cardiac function in relation to cellular integrity in Fabry disease. Int J Cardiol 160:53–58

    PubMed  Google Scholar 

  117. Moon JC, Sachdev B, Elkington AG, McKenna WJ, Mehta A, Pennell DJ, Leed PJ, Elliott PM (2003) Gadolinium enhanced cardiovascular magnetic resonance in anderson-fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J 24:2151–2155

    PubMed  Google Scholar 

  118. Niemann M, Herrmann S, Hu K et al (2011) Differences in Fabry cardiomyopathy between female and male patients: consequences for diagnostic assessment. JACC Cardiovasc Imaging 4:592–601

    PubMed  Google Scholar 

  119. Sado DM, White SK, Piechnik SK, Banypersad SM, Treibel T, Captur G, Fontana M, Maestrini V, Flett AS, Robson MD, Lachmann RH, Murphy E, Mehta A, Hughes D, Neubauer S, Elliott PM, Moon JC (2013) Identification and assessment of anderson-fabry disease by cardiovascular magnetic resonance noncontrast myocardial t1 mapping. Circ Cardiovasc Imaging 6:392–398

    PubMed  Google Scholar 

  120. Kalliokoski RJ, Kalliokoski KK, Sundell J, Engblom E, Penttinen M, Kantola I, Raitakari OT, Knuuti J, Nuutila P (2005) Impaired myocardial perfusion reserve but preserved peripheral endothelial function in patients with fabry disease. J Inherit Metab Dis 28:563–573

    CAS  PubMed  Google Scholar 

  121. Funabashi N, Toyozaki T, Matsumoto Y, Yonezawa M, Yanagawa N, Yoshida K, Komuro I (2003) Images in cardiovascular medicine. Myocardial fibrosis in fabry disease demonstrated by multislice computed tomography: comparison with biopsy findings. Circulation 107:2519–2520

    PubMed  Google Scholar 

  122. Beer M, Weidemann F, Breunig F, Knoll A, Koeppe S, Machann W, Hahn D, Wanner C, Strotmann J, Sandstede J (2006) Impact of enzyme replacement therapy on cardiac morphology and function and late enhancement in Fabry’s cardiomyopathy. Am J Cardiol 97(10):1515–1518. doi:10.1016/j.amjcard.2005.11.087

    CAS  PubMed  Google Scholar 

  123. Guertl B, Noehammer C, Hoefler G (2000) Metabolic cardiomyopathies. Int J Exp Pathol 81:349–372

    CAS  PubMed  PubMed Central  Google Scholar 

  124. van der Ploeg AT, Reuser AJJ (2008) Lysosomal storage disease 2. Pompe’s disease. Lancet 372:1342–1353

    PubMed  Google Scholar 

  125. Chien YH, Hwu WL, Lee NC (2013) Pompe disease: early diagnosis and early treatment make a difference. Pediatr Neonatol 54:219–227

    PubMed  Google Scholar 

  126. Lorber A, Luder AS (1987) Very early presentation of Pompe’s disease and its cross-sectional echocardiographic features. Int J Cardiol 16(3):311–314

    CAS  PubMed  Google Scholar 

  127. Shapir Y, Roguin N (1985) Echocardiographic findings in Pompe’s disease with left ventricular obstruction. Clin Cardiol 8(3):181–185

    CAS  PubMed  Google Scholar 

  128. Danon MJ, Oh SJ, Di Mauro S et al (1981) Lysosomal glycogen storage disease with normal acid maltase. Neurology 31:51–57

    CAS  PubMed  Google Scholar 

  129. Arad M, Maron BJ, Gorham JM et al (2005) Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med 352:362–372

    CAS  PubMed  Google Scholar 

  130. Charron P, Villard E, Sebillon P, Laforet P, Maisonobe T, Duboscq-Bidot L, Romero N, Drouin-Garraud V, Frebourg T, Richard P, Eymard B, Komajda M (2004) Danon’s disease as a cause of hypertrophic cardiomyopathy: a systematic survey. Heart 90(8):842–846. doi:10.1136/hrt.2003.029504

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Tada H, Harimura Y, Yamasaki H, Sekiguchi Y, Ishizu T, Seo Y, Kawano S, Aonuma K (2010) Utility of real-time 3-dimensional echocardiography and magnetic resonance imaging for evaluation of Danon disease. Circulation 121(17):e390–e392. doi:10.1161/CIR.0b013e3181de7097

    PubMed  Google Scholar 

  132. Miani D, Nucifora G, Piccoli G, Proclemer A, Badano LP (2012) Incremental value of three-dimensional strain imaging in Danon disease. Eur Heart J Cardiovasc Imaging 13(10):804. doi:10.1093/ehjci/jes099

    PubMed  Google Scholar 

  133. Nucifora G, Miani D, Piccoli G, Proclemer A (2012) Cardiac magnetic resonance imaging in Danon disease. Cardiology 121:27–30

    PubMed  Google Scholar 

  134. Piotrowska-Kownacka D, Kownacki L, Kuch M, Walczak E, Kosieradzka A, Fidzianska A, Krolicki L (2009) Cardiovascular magnetic resonance findings in a case of danon disease. J Cardiovasc Magn Reson 11:12

    PubMed  PubMed Central  Google Scholar 

  135. Maron BJ, Roberts WC, Arad M, Haas TS, Spirito P, Wright GB, Almquist AK, Baffa JM, Saul JP, Ho CY, Seidman J, Seidman CE (2009) Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA 301(12):1253–1259. doi:10.1001/jama.2009.371

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Maron BJ, Roberts WC, Ho CY, Kitner C, Haas TS, Wright GB, Moazami N, Feldman DS (2010) Profound left ventricular remodeling associated with LAMP2 cardiomyopathy. Am J Cardiol 106(8):1194–1196. doi:10.1016/j.amjcard.2010.06.035

    PubMed  Google Scholar 

  137. Laforêt P, Richard P, Said MA et al (2006) A new mutation in PRKAG2 gene causing hypertrophic cardiomyopathy with conduction system disease and muscular glycogenosis. Neuromuscul Disord 16:178–182

    PubMed  Google Scholar 

  138. Murphy RT, Mogensen J, McGarry K, Bahl A, Evans A, Osman E, Syrris P, Gorman G, Farrell M, Holton JL, Hanna MG, Hughes S, Elliott PM, Macrae CA, McKenna WJ (2005) Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff-Parkinson-White syndrome: natural history. J Am Coll Cardiol 45(6):922–930. doi:10.1016/j.jacc.2004.11.053

    CAS  PubMed  Google Scholar 

  139. Fabris E, Brun F, Porto AG, Losurdo P, Vitali Serdoz L, Zecchin M, Severini GM, Mestroni L, Di Chiara A, Sinagra G (2013) Cardiac hypertrophy, accessory pathway, and conduction system disease in an adolescent: the PRKAG2 cardiac syndrome. J Am Coll Cardiol 62(9):e17. doi:10.1016/j.jacc.2013.02.099

    PubMed  Google Scholar 

  140. Rigante D, Segni G (2002) Cardiac structural involvement in mucopolysaccharidoses. Cardiology 98:18–20

    PubMed  Google Scholar 

  141. Dangel JH (1998) Cardiovascular changes in children with mucopolysaccharide storage diseases and related disorders: clinical and echocardiographic findings in 64 patients. Eur J Pediatr 157:534–538

    CAS  PubMed  Google Scholar 

  142. Butman SM, Karl L, Copeland JG (1989) Combined aortic and mitral valve replacement in an adult with Scheie’s disease. Chest 96:209–210

    CAS  PubMed  Google Scholar 

  143. Satoh Y, Sakamoto K, Fujibayashi Y et al (1983) Cardiac involvement in mucolipidosis. Importance of non-invasive studies for detection of cardiac abnormalities. Jpn Heart J 24:149–159

    CAS  PubMed  Google Scholar 

  144. Hoffbrand AV (2001) Diagnosing myocardial iron overload. Eur Heart J 22:2140–2141

    CAS  PubMed  Google Scholar 

  145. Alexander J, Kowdley KV (2005) Hereditary hemochromatosis: genetics, pathogenesis, and clinical management. Ann Hepatol 4:240–247

    CAS  PubMed  Google Scholar 

  146. Palka P, Macdonald G, Lange A, Burstow DJ (2002) The role of Doppler left ventricular filling indexes and Doppler tissue echocardiography in the assessment of cardiac involvement in hereditary hemochromatosis. J Am Soc Echocardiogr 15(9):884–890

    PubMed  Google Scholar 

  147. Kremastinos DT, Tsiapras DP, Tsetsos GA, Rentoukas EI, Vretou HP, Toutouzas PK (1993) Left ventricular diastolic Doppler characteristics in beta-thalassemia major. Circulation 88(3):1127–1135

    CAS  PubMed  Google Scholar 

  148. Seliem MA, Al-Saad HI, Bou-Holaigah IH, Khan MN, Palileo MR (2002) Left ventricular diastolic dysfunction in congenital chronic anaemias during childhood as determined by comprehensive echocardiographic imaging including acoustic quantification. Eur J Echocardiogr 3(2):103–110

    CAS  PubMed  Google Scholar 

  149. Olson LJ, Baldus WP, Tajik JA (1987) Echocardiographic features of idiopathic hemochromatosis. Am J Cardiol 60:885–889

    CAS  PubMed  Google Scholar 

  150. Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH, Firmin DN, Wonke B, Porter J, Walker JM, Pennell DJ (2001) Cardiovascular t2-star (t2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 22:2171–2179

    CAS  PubMed  Google Scholar 

  151. Wood JC, Tyszka JM, Carson S, Nelson MD, Coates TD (2004) Myocardial iron loading in transfusion-dependent thalassemia and sickle cell disease. Blood 103:1934–1936

    CAS  PubMed  Google Scholar 

  152. Suksaranjit P, Prasidthrathsint K (2013) Clinical implication of T2* cardiac magnetic resonance imaging in cardiac siderosis. Am J Med 126:e9–e10

    PubMed  Google Scholar 

  153. Hazirolan T, Akpinar B, Unal S, Gumruk F, Haliloglu M, Alibek S (2008) Value of dual energy computed tomography for detection of myocardial iron deposition in thalassaemia patients: initial experience. Eur J Radiol 68:442–445

    PubMed  Google Scholar 

  154. Jensen PD, Jensen FT, Christensen T, Eiskjaer H, Baandrup U, Nielsen JL (2003) Evaluation of myocardial iron by magnetic resonance imaging during iron chelation therapy with deferrioxamine: indication of close relation between myocardial iron content and chelatable iron pool. Blood 101(11):4632–4639. doi:10.1182/blood-2002-09-2754

    CAS  PubMed  Google Scholar 

  155. Anderson LJ, Westwood MA, Holden S, Davis B, Prescott E, Wonke B, Porter JB, Walker JM, Pennell DJ (2004) Myocardial iron clearance during reversal of siderotic cardiomyopathy with intravenous desferrioxamine: a prospective study using T2* cardiovascular magnetic resonance. Br J Haematol 127(3):348–355. doi:10.1111/j.1365-2141.2004.05202.x

    CAS  PubMed  Google Scholar 

  156. Kuan P (1987) Cardiac Wilson’s disease. Chest 91:579–583

    CAS  PubMed  Google Scholar 

  157. Dürr A, Cossee M, Agid Y et al (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 335:1169–1175

    PubMed  Google Scholar 

  158. Child JS, Perloff JK, Bach PM et al (1986) Cardiac involvement in Friedreich’s ataxia: a clinical study of 75 patients. J Am Coll Cardiol 7:1370–1378

    CAS  PubMed  Google Scholar 

  159. Leone M, Rocca WA, Rosso MG et al (1988) Friedreich’s disease: survival analysis in an Italian population. Neurology 38:1433–1438

    CAS  PubMed  Google Scholar 

  160. Alboliras ET, Shub C, Gomez MR, Edwards WD, Hagler DJ, Reeder GS, Seward JB, Tajik AJ (1986) Spectrum of cardiac involvement in Friedreich’s ataxia: clinical, electrocardiographic and echocardiographic observations. Am J Cardiol 58(6):518–524

    CAS  PubMed  Google Scholar 

  161. Dutka DP, Donnelly JE, Nihoyannopoulos P, Oakley CM, Nunez DJ (1999) Marked variation in the cardiomyopathy associated with Friedreich’s ataxia. Heart 81(2):141–147

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Morvan D, Komajda M, Doan LD, Brice A, Isnard R, Seck A, Lechat P, Agid Y, Grosgogeat Y (1992) Cardiomyopathy in Friedreich’s ataxia: a Doppler-echocardiographic study. Eur Heart J 13(10):1393–1398

    CAS  PubMed  Google Scholar 

  163. Cochat P, Hulton SA, Acquaviva C et al (2012) Primary hyperoxaluria Type 1: indications for screening and guidance for diagnosis and treatment. Nephrol Dial Transplant 27:1729–1736

    CAS  PubMed  Google Scholar 

  164. Schulze MR, Wachter R, Schmeisser A et al (2006) Restrictive cardiomyopathy in a patient with primary hyperoxaluria type II. Clin Res Cardiol 95:235–240

    PubMed  Google Scholar 

  165. Vélez-Roa S, Depierreux M, Nortier J et al (2006) Cardiac oxalosis: a rare cause of diastolic dysfunction. Eur Heart J 27:2496

    PubMed  Google Scholar 

  166. Van Driessche L, Dhondt A, De Sutter J (2007) Heart failure with mitral valve regurgitation due to primary hyperoxaluria type 1: case report with review of the literature. Acta Cardiol 62:202–206

    PubMed  Google Scholar 

  167. Detry O, Honoré P, DeRoover A et al (2002) Reversal of oxalosis cardiomyopathy after combined liver and kidney transplantation. Transpl Int 15:50–52

    PubMed  Google Scholar 

  168. Palka P, Duhig E, Carey L, Galbraith A (2001) Primary oxalosis with cardiac involvement: echocardiographic features of an unusual form of cardiomyopathy. Circulation 103(24):E122–E123

    CAS  PubMed  Google Scholar 

  169. Bates MGD, Bourke JP, Giordano C et al (2012) Cardiac involvement in mitochondrial DNA disease: clinical spectrum, diagnosis, and management. Eur Heart J 33:3023–3033

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Sebastiani M, Giordano C, Nediani C et al (2007) Induction of mitochondrial biogenesis is a maladaptive mechanism in mitochondrial cardiomyopathies. J Am Coll Cardiol 50:1362–1369

    CAS  PubMed  Google Scholar 

  171. Anan R (1991) Cardiac involvement in mitochondrial disease: a clinical study of 38 patients. Igaku Kenkyu 61(2):49–61

    CAS  PubMed  Google Scholar 

  172. Holmgren D, Wahlander H, Eriksson BO, Oldfors A, Holme E, Tulinius M (2003) Cardiomyopathy in children with mitochondrial disease; clinical course and cardiological findings. Eur Heart J 24(3):280–288

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Moretti .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MOV 832 kb)

(MOV 1368 kb)

Clip 20.3a

(MP4 1156 kb)

Clip 20.3b

(MP4 1142 kb)

Clip 20.3c

(MP4 1224 kb)

Clip 20.4

(MOV 900 kb)

Clip 20.5

(MOV 892 kb)

(MOV 1691 kb)

(MOV 1364 kb)

(MOV 1574 kb)

(MOV 1604 kb)

(MOV 1654 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moretti, M. et al. (2014). Infiltrative/Storage Cardiomyopathies: Clinical Assessment and Imaging in Diagnosis and Patient Management. In: Pinamonti, B., Sinagra, G. (eds) Clinical Echocardiography and Other Imaging Techniques in Cardiomyopathies. Springer, Cham. https://doi.org/10.1007/978-3-319-06019-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06019-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06018-7

  • Online ISBN: 978-3-319-06019-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics