Skip to main content

Advertisement

Log in

Advancement of Imaging and Modeling Techniques for Understanding Gastric Physical Forces on Food

  • Review Paper
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The physical forces exerted by the stomach break down the food particles mechanically facilitating digestion and absorption. Such mechanical action occurs by the powerful peristaltic contractions along the stomach wall, known as gastric motor function. Several in vitro models are developed to understand this mechanical digestion of food particle breakdown. However, the fluid mechanical forces that determine the pressure and flow fields with the effect on shear stress, dispersing food particles remains overlooked. Modern imaging techniques such as magnetic resonance imaging, computed tomography scan and ultrasound help to visualize the digestion process involving mixing, dilution and dispersion of food. On the other hand, advances in computational methods have proven effective in predicting the interaction between gastric functions and food physical properties. The review discusses the novel imaging and modeling techniques to understand the stomach physical forces that gives information on designing a food formulation (e.g., functional foods) at manufacture stage, targeted for a particular purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

u :

The velocity component (cm/s)

p :

Pressure (Pa)

\(\left( {\frac{\mu }{\rho }} \right)\) :

Kinematic viscosity of the fluid (cp)

ρ :

Density of the fluid (kg/m3)

:

The dimensions of reciprocal length

D :

Diameter of the contraction ring

D 0 :

Original diameter of the section before contraction

T :

Time (s)

k :

Consistency index (Pa s)

n :

Flow behavior index

γ :

Shear rate (s−1)

η :

Apparent viscosity for non-Newtonian fluid (Pa s)

References

  1. Sensoy I (2014) A review on the relationship between food structure, processing, and bioavailability. Crit Rev Food Sci Nutr 54:902–909. doi:10.1080/10408398.2011.619016

    Article  CAS  Google Scholar 

  2. Schulze K (2006) Imaging and modelling of digestion in the stomach and the duodenum. Neurogastroenterol Motil 18:172–183. doi:10.1111/j.1365-2982.2006.00759.x

    Article  CAS  Google Scholar 

  3. Kong F, Singh RP (2008) Disintegration of solid foods in human stomach. J Food Sci 73:R67–R80

    Article  CAS  Google Scholar 

  4. Chen L, Wu X, Chen XD (2013) Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats—motility and morphological influences. J Food Eng 117:183–192. doi:10.1016/j.jfoodeng.2013.02.003

    Article  CAS  Google Scholar 

  5. Hunter PJ (2006) Modeling human physiology: the IUPS/EMBS physiome project. Proc IEEE 94:678–691. doi:10.1109/JPROC.2006.871767

    Article  Google Scholar 

  6. Ferrua MJ, Kong F, Singh RP (2011) Computational modeling of gastric digestion and the role of food material properties. Trends Food Sci Technol 22:480–491. doi:10.1016/j.tifs.2011.04.007

    Article  CAS  Google Scholar 

  7. Ferrua MJ, Singh RP (2010) Modeling the fluid dynamics in a human stomach to gain insight of food digestion. J Food Sci 75:R151–R162. doi:10.1111/j.1750-3841.2010.01748.x

    Article  CAS  Google Scholar 

  8. Xue Z, Ferrua MJ, Singh P (2012) Computational fluid dynamics modeling of granular flow in human stomach. Aliment Hoy 21:3–14

    CAS  Google Scholar 

  9. Heuman DM, Mills AS, McGuire HH (1997) Gastroenterology, 1st edn. Saunders, Philadelphia

    Google Scholar 

  10. Sherwood L (2011) Fundamentals of human physiology, 4th edn. Brooks Cole, USA

    Google Scholar 

  11. Md RMG, Md MSL (2007) Textbook of gastrointestinal radiology, 3e, 3rd edn. Saunders, Philadelphia

    Google Scholar 

  12. Hall JE (2010) Guyton and hall textbook of medical physiology, 12th edn. Saunders, Philadelphia

    Google Scholar 

  13. Kararli TT (1995) Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 16:351–380. doi:10.1002/bdd.2510160502

    Article  CAS  Google Scholar 

  14. Vertzoni M, Dressman J, Butler J et al (2005) Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds. Eur J Pharm Biopharm 60:413–417. doi:10.1016/j.ejpb.2005.03.002

    Article  CAS  Google Scholar 

  15. Ronzio RA (2003) The encyclopedia of nutrition and good health. Infobase Publishing, New York

    Google Scholar 

  16. Abrahamsson B, Pal A, Sjöberg M et al (2005) A novel in vitro and numerical analysis of shear-induced drug release from extended-release tablets in the fed stomach. Pharm Res 22:1215–1226. doi:10.1007/s11095-005-5272-x

    Article  CAS  Google Scholar 

  17. Wickham MJS, Faulks RM, Mann J, Mandalari G (2013) The design, operation, and application of a dynamic gastric model. Dissolution Technol 19(3):15–22

    Article  Google Scholar 

  18. Goetze O, Treier R, Fox M et al (2009) The effect of gastric secretion on gastric physiology and emptying in the fasted and fed state assessed by magnetic resonance imaging. Neurogastroenterol Motil 21:725–e42. doi:10.1111/j.1365-2982.2009.01293.x

    Google Scholar 

  19. Kwiatek MA, Steingoetter A, Pal A et al (2006) Quantification of distal antral contractile motility in healthy human stomach with magnetic resonance imaging. J Magn Reson Imaging 24:1101–1109. doi:10.1002/jmri.20738

    Article  Google Scholar 

  20. Pallotta N, Cicala M, Frandina C, Corazziari E (1998) Antro-pyloric contractile patterns and transpyloric flow after meal ingestion in humans. Am J Gastroenterol 93:2513–2522. doi:10.1016/S0002-9270(98)00479-1

    Article  CAS  Google Scholar 

  21. Steingoetter A, Kwiatek MA, Pal A et al (2005) MRI to assess the contribution of gastric peristaltic activity and tone to the rate of liquid gastric emptying in health. Proc Int Soc Magn Reson Med 13:426

    Google Scholar 

  22. Chapman MJ, Fraser RJ, Bryant LK et al (2008) Gastric emptying and the organization of antro-duodenal pressures in the critically ill. Neurogastroenterol Motil 20:27–35. doi:10.1111/j.1365-2982.2007.00984.x

    Article  CAS  Google Scholar 

  23. Hunt JN, Stubbs DF (1975) The volume and energy content of meals as determinants of gastric emptying. J Physiol 245:209–225

    Article  CAS  Google Scholar 

  24. Marciani L, Gowland PA, Spiller RC et al (2001) Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI. Am J Physiol-Gastrointest Liver Physiol 280:G1227–G1233

    CAS  Google Scholar 

  25. Kwiatek MA, Menne D, Steingoetter A et al (2009) Effect of meal volume and calorie load on postprandial gastric function and emptying: studies under physiological conditions by combined fiber-optic pressure measurement and MRI. Am J Physiol-Gastrointest Liver Physiol 297:G894–G901. doi:10.1152/ajpgi.00117.2009

    Article  CAS  Google Scholar 

  26. Norton JE, Wallis GA, Spyropoulos F et al (2013) Designing food structures for nutrition and health benefits. Annu Rev Food Sci Technol 5:140103170419005. doi:10.1146/annurev-food-030713-092315

    Google Scholar 

  27. Lentle RG, Janssen PWM (2010) Manipulating digestion with foods designed to change the physical characteristics of digesta. Crit Rev Food Sci Nutr 50:130–145. doi:10.1080/10408390802248726

    Article  CAS  Google Scholar 

  28. McClements DJ, Li Y (2010) Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv Colloid Interface Sci 159:213–228. doi:10.1016/j.cis.2010.06.010

    Article  CAS  Google Scholar 

  29. McDonald DE, Pethick DW, Mullan BP, Hampson DJ (2001) Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic Escherichia coli in newly-weaned pigs. Br J Nutr 86:487–498

    Article  CAS  Google Scholar 

  30. Kong F, Singh RP (2009) Modes of disintegration of solid foods in simulated gastric environment. Food Biophys 4:180–190. doi:10.1007/s11483-009-9116-9

    Article  Google Scholar 

  31. Kong F, Singh RP (2010) Solid loss of carrots during simulated gastric digestion. Food Biophys 6:84–93. doi:10.1007/s11483-010-9178-8

    Article  Google Scholar 

  32. Gopirajah R, Anandharamakrishnan C (2014) Methods integrating physical mechanisms underlying the food digestion and release of nutrients in human stomach. J Nutr Nutr Epidemiol 1:1–13

    Google Scholar 

  33. Guerra A, Etienne-Mesmin L, Livrelli V et al (2012) Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol 30:591–600. doi:10.1016/j.tibtech.2012.08.001

    Article  CAS  Google Scholar 

  34. Marciani L (2011) Assessment of gastrointestinal motor functions by MRI: a comprehensive review: functional GI MRI. Neurogastroenterol Motil 23:399–407. doi:10.1111/j.1365-2982.2011.01670.x

    Article  CAS  Google Scholar 

  35. Benshitrit RC, Levi CS, Tal SL et al (2012) Development of oral food-grade delivery systems: current knowledge and future challenges. Food Funct 3:10. doi:10.1039/c1fo10068h

    Article  CAS  Google Scholar 

  36. Mainville I, Arcand Y, Farnworth ER (2005) A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics. Int J Food Microbiol 99:287–296. doi:10.1016/j.ijfoodmicro.2004.08.020

    Article  CAS  Google Scholar 

  37. Vatier J, Célice-Pingaud C, Farinotti R (1998) Interests of the “artificial stomach” techniques to study antacid formulations: comparison with in vivo evaluation. Fundam Clin Pharmacol 12:573–583

    Article  CAS  Google Scholar 

  38. Kong F, Singh RP (2010) A human gastric simulator (HGS) to study food digestion in human stomach. J Food Sci 75:E627–E635. doi:10.1111/j.1750-3841.2010.01856.x

    Article  CAS  Google Scholar 

  39. Minekus M, Havenaar R (1996) In vitro model of an in vivo digestive tract. U.S. Patent No. 5525305 A.

  40. Kozu H, Nakata Y, Nakajima M et al (2014) Development of a human gastric digestion simulator equipped with peristalsis function for the direct observation and analysis of the food digestion process. Food Sci Technol Res 20:225–233. doi:10.3136/fstr.20.225

    Article  CAS  Google Scholar 

  41. Oomen AG, Rompelberg CJM, Bruil MA et al (2003) Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Arch Environ Contam Toxicol 44:0281–0287. doi:10.1007/s00244-002-1278-0

    Article  CAS  Google Scholar 

  42. Kitano H (2002) Computational systems biology. Nature 420:206–210. doi:10.1038/nature01254

    Article  CAS  Google Scholar 

  43. Pal A, Indireshkumar K, Schwizer W et al (2004) Gastric flow and mixing studied using computer simulation. Proc R Soc Lond B Biol Sci 271:2587–2594. doi:10.1098/rspb.2004.2886

    Article  Google Scholar 

  44. Boulby P, Gowland P, Adams V, Spiller RC (1997) Use of echo planar imaging to demonstrate the effect of posture on the intragastric distribution and emptying of an oil/water meal. Neurogastroenterol Motil 9:41–47

    Article  CAS  Google Scholar 

  45. Baba S, Sasaki A, Nakajima J et al (2009) Assessment of gastric motor function by cine magnetic resonance imaging. J Gastroenterol Hepatol 24:1401–1406. doi:10.1111/j.1440-1746.2009.05891.x

    Article  Google Scholar 

  46. Bornhorst GM, Singh RP (2013) Gastric digestion in vivo and in vitro: how the structural aspects of food influence the digestive process. Annu Rev Food Sci Technol 5:140103170419005. doi:10.1146/annurev-food-030713-092346

    Google Scholar 

  47. Akhmadeev N, Miftahof R (2011) Stress-strain distribution in the human stomach. Model, Med Biol 3

    Book  Google Scholar 

  48. Liao D, Lelic D, Gao F et al (2008) Biomechanical functional and sensory modelling of the gastrointestinal tract. Philos Trans R Soc Math Phys Eng Sci 366:3281–3299. doi:10.1098/rsta.2008.0091

    Article  Google Scholar 

  49. Simonian HP, Maurer AH, Knight LC et al (2004) Simultaneous assessment of gastric accommodation and emptying: studies with liquid and solid meals. J Nucl Med 45:1155–1160

    Google Scholar 

  50. Schulze-Delrieu K, Herman RJ, Shirazi SS, Brown BP (1998) Contractions move contents by changing the configuration of the isolated cat stomach. Am J Physiol-Gastrointest Liver Physiol 274:G359–G369

    CAS  Google Scholar 

  51. Sharma N, Agarwal D, Gupta MK, Khinchi M (2011) A comprehensive review on floating drug delivery system. Int J Res Pharm Biomed Sci 2:428–432

    Google Scholar 

  52. Marciani L, Gowland PA, Spiller RC et al (2000) Gastric response to increased meal viscosity assessed by echo-planar magnetic resonance imaging in humans. J Nutr 130:122–127

    CAS  Google Scholar 

  53. Ajaj W (2004) Real time high resolution magnetic resonance imaging for the assessment of gastric motility disorders. Gut 53:1256–1261. doi:10.1136/gut.2003.038588

    Article  CAS  Google Scholar 

  54. Rayment P, Wright P, Hoad C et al (2009) Investigation of alginate beads for gastro-intestinal functionality, Part 1: in vitro characterisation. Food Hydrocoll 23:816–822. doi:10.1016/j.foodhyd.2008.04.011

    Article  CAS  Google Scholar 

  55. Marciani L, Young P, Wright J et al (2001) Antral motility measurements by magnetic resonance imaging. Neurogastroenterol Motil 13:511–518

    Article  CAS  Google Scholar 

  56. Bateman DN, Whittingham TA (1982) Measurement of gastric emptying by real-time ultrasound. Gut 23:524–527. doi:10.1136/gut.23.6.524

    Article  CAS  Google Scholar 

  57. Feinle C, Kunz P, Boesiger P et al (1999) Scintigraphic validation of a magnetic resonance imaging method to study gastric emptying of a solid meal in humans. Gut 44:106–111. doi:10.1136/gut.44.1.106

    Article  CAS  Google Scholar 

  58. Treier R, Steingoetter A, Weishaupt D et al (2006) Gastric motor function and emptying in the right decubitus and seated body position as assessed by magnetic resonance imaging. J Magn Reson Imaging 23:331–338. doi:10.1002/jmri.20507

    Article  Google Scholar 

  59. Cheng LK, Komuro R, Austin TM et al (2007) Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity. World J Gastroenterol 13:1378

    Article  Google Scholar 

  60. Crampin EJ, Halstead M, Hunter P et al (2004) Computational physiology and the physiome project. Exp Physiol 89:1–26. doi:10.1113/expphysiol.2003.026740

    Article  Google Scholar 

  61. Hunter PJ (2004) The IUPS physiome project: a framework for computational physiology. Prog Biophys Mol Biol 85:551–569. doi:10.1016/j.pbiomolbio.2004.02.006

    Article  CAS  Google Scholar 

  62. Anandharamakrishnan C (2013) Computational fluid dynamics applications in food processing, 2013th edn. Springer, New York

    Book  Google Scholar 

  63. Kozu H, Kobayashi I, Neves MA et al (2014) PIV and CFD studies on analyzing intragastric flow phenomena induced by peristalsis using a human gastric flow simulator. Food Funct 5:1839–1847. doi:10.1039/C4FO00041B

    Article  CAS  Google Scholar 

  64. Anandharamakrishnan C (2013) Computational fluid dynamics (CFD): applications for the food industry. Indian Food Ind 22:62–68

    Google Scholar 

  65. Takahashi T (2011) Flow behavior of digesta and the absorption of nutrients in the gastrointestine. J Nutr Sci Vitaminol (Tokyo) 57:265–273

    Article  CAS  Google Scholar 

  66. Boron WF, Boulpaep EL (2012) Medical physiology, 2e updated edition: with Student consult online access. Elsevier Health Sciences

  67. Pal A, Brasseur JG, Abrahamsson B (2007) A stomach road or “Magenstrasse” for gastric emptying. J Biomech 40:1202–1210. doi:10.1016/j.jbiomech.2006.06.006

    Article  Google Scholar 

  68. Kozu H, Kobayashi I, Nakajima M et al (2010) Analysis of flow phenomena in gastric contents induced by human gastric peristalsis using CFD. Food Biophys 5:330–336. doi:10.1007/s11483-010-9183-y

    Article  Google Scholar 

  69. Ferrua MJ, Singh RP (2015) Computational modelling of gastric digestion: current challenges and future directions. Curr Opin Food Sci 4:116–123. doi:10.1016/j.cofs.2015.06.005

    Article  Google Scholar 

  70. Doran S, Jones KL, Andrews JM, Horowitz M (1998) Effects of meal volume and posture on gastric emptying of solids and appetite. Am J Physiol-Regul Integr Comp Physiol 275:R1712–R1718

    CAS  Google Scholar 

  71. Hunt JN, Knox MT, Oginski A (1965) The effect of gravity on gastric emptying with various test meals. J Physiol 178:92–97

    Article  CAS  Google Scholar 

  72. Imai Y, Kobayashi I, Ishida S et al (2013) Antral recirculation in the stomach during gastric mixing. AJP Gastrointest Liver Physiol 304:G536–G542. doi:10.1152/ajpgi.00350.2012

    Article  CAS  Google Scholar 

  73. Yassi R, Cheng LK, Rajagopal V et al (2009) Modeling of the mechanical function of the human gastroesophageal junction using an anatomically realistic three-dimensional model. J Biomech 42:1604–1609. doi:10.1016/j.jbiomech.2009.04.041

    Article  CAS  Google Scholar 

  74. Lin AS, Buist ML, Cheng LK et al (2006) Computational simulations of the human magneto- and electroenterogram. Ann Biomed Eng 34:1322–1331. doi:10.1007/s10439-006-9142-4

    Article  CAS  Google Scholar 

  75. Pullan A, Cheng L, Yassi R, Buist M (2004) Modelling gastrointestinal bioelectric activity. Prog Biophys Mol Biol 85:523–550. doi:10.1016/j.pbiomolbio.2004.02.003

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Ram Rajasekharan, Director, CSIR-CFTRI, Mysore, India, for his support and encouragement. The author (Gopi) thanks the CSIR, India, for awarding SRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Anandharamakrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopirajah, R., Anandharamakrishnan, C. Advancement of Imaging and Modeling Techniques for Understanding Gastric Physical Forces on Food. Food Eng Rev 8, 323–335 (2016). https://doi.org/10.1007/s12393-016-9140-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-016-9140-8

Keywords

Navigation