Skip to main content

Biophysical and Gastro-Intestinal Engineering Aspects of Nutrient Absorption and Physiological Function

  • Chapter
  • First Online:
Delivering Functionality in Foods

Part of the book series: Food Engineering Series ((FSES))

  • 499 Accesses

Abstract

In the design of modern processed foods, and especially in the design of foods to deliver functionality, attention must be paid to the fate of the food in the human digestive tract. This has been appositely put by (Norton et al., Annu Rev Food Sci Technol 5:177–195, 2014):

All foods pass through a common unit operation, the gastrointestinal tract, yet it is the least studied and least understood of all food processes. To design the foods of the future, we need to understand what happens inside people in the same way as understanding any other process.

The processing of food through the human digestive tract has been studied and speculated about since the time of the ancient Egyptians and Greeks. Modern studies largely originate from the historical studies of Dr. William Beaumont (Experiments and observations on the gastric juice, and the physiology of digestion. FF Allen, Plattsburgh, 1833) on a single subject with a gastric fistula caused initially by a gunshot wound. In this work, following more than 200 experiments, Beaumont makes 50 observations about gastric digestion, most of which are still valid today.

The physicochemistry and biology of human digestion of specific food components in the normal human gastrointestinal tract are well understood. Early work focused on the chemistry of what happens during digestion, and more recently attention has been placed on the processing of solid and semi-solid foods, and mechanical and microstructural aspects of the process have been more closely studied. There are, however, many aspects of digestion in which there is a need to improve our knowledge if we are to properly understand how we interact with the food we eat, to enable us to create new foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Astruc T (2014) Muscle structure and digestive enzyme bioaccessibility to intracellular compartments. In: Boland M, Golding M, Singh H (eds) Food structures, digestion and health. Academic, London, pp 193–222

    Google Scholar 

  • Barrosso E, Cueva C, Pelaez C, Martinez-Cuesta MC, Requena T (2015) The computer-controlled multicompartmental dynamic model of the gastrointestinal system SIMGI. In: Verhoeckx K, Cotter P, Lopez-Exposito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H (eds) The impact of food bio-actives on gut health. In vitro and ex vivo models. Springer, Cham

    Google Scholar 

  • Beaumont W (1833) Experiments and observations on the gastric juice, and the physiology of digestion. FF Allen, Plattsburgh

    Google Scholar 

  • Bellmann S, Minekus M, Zeijdner E, Verwei M, Sanders P, Basten W, Havenaar R (2010) TIM-carbo: a rapid, cost-efficient and reliable in vitro method for glycemic response after carbohydrate ingestion. In: van der Kamp JW, Jones JM, BV MC (eds) Dietary fibre: new frontiers for food and health. Wageningen Academic Publishers, Wageningen

    Google Scholar 

  • Berg T, Singh J, Hardacre A, Boland MJ (2012) The role of cotyledon cell structure during in vitro digestion of starch in navy beans. Carbohydr Polym 87:1678–1688

    CAS  Google Scholar 

  • Berner AZ, Fuentes S, Dostal A, Payne AN, Gutierrez PV, Chassard C, Grattepanche F, DE Vos WM, Lacroix C (2013) Novel Polyfermentor intestinal model (PolyFermS) for controlled ecological studies: validation and effect of pH. PLoS One:8, e77772

    Google Scholar 

  • Biesiekierski JR, Jalanka J, Staudacher H (2019) Nutrients 11:1134

    CAS  PubMed Central  Google Scholar 

  • Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrere B (1997) Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci U S A 94:14930–14935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boland MJ (2016) Human digestion-a processing perspective. J Sci Food Agric 96:2275–2283. https://doi.org/10.1002/jsfa.7601

    Article  CAS  PubMed  Google Scholar 

  • Bornhorst GM, Rutherfurd SM, Roman MJ, Burri BJ, Moughan PJ, Singh RP (2014) Gastric pH distribution and mixing of soft and rigid food particles in the stomach using a dual-marker technique. Food Biophys 9:292–300

    Google Scholar 

  • Brownlee IA, Forster DJ, Wilcox MD, Dettmar PW, Seal CJ, Pearson JP (2010) Physiological parameters governing the action of pancreatic lipase. Nutr Res Rev 23:146–154

    CAS  PubMed  Google Scholar 

  • Carpenter GH (2013) The secretion, components, and properties of saliva. Annu Rev Food Sci Technol 4(4):267–276

    CAS  PubMed  Google Scholar 

  • Cecchini DA, Laville E, Laguerre S, Robe P, Leclerc M, Dore J, Henrissat B, Remaud-Simeon M, Monsan P, Potocki-Veronese G (2013) Functional metagenomics reveals novel pathways of prebiotic breakdown by human gut bacteria. PLoS One 8:e72766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J (2009) Food oral processing – a review. Food Hydrocoll 23:1–25

    Google Scholar 

  • Chen J, Lolivret L (2011) The determining role of bolus rheology in triggering a swallowing. Food Hydrocoll 25:325–332

    CAS  Google Scholar 

  • Chen L, Xu Y, Fan T, Liao Z, Wu P, Wu X, Chen XD (2016) Gastric emptying and morphology of a ‘near real’ in vitro human stomach model (RD-IV-HSM). J Food Eng 183:1–8

    Google Scholar 

  • Chen J, Wang Q, Liu CM, Gong J (2017) Issues deserve attention in encapsulating probiotics: critical review of existing literature. Crit Rev Food Sci Nutr 57:1228–1238

    CAS  PubMed  Google Scholar 

  • Cinquin C, LE Blay G, Fliss I, Lacroix C (2006) New three-stage in vitro model for infant colonic fermentation with immobilized fecal microbiota. FEMS Microbiol Ecol 57:324–336

    CAS  PubMed  Google Scholar 

  • Clarke SF, Murphy EF, Nilaweera K, Ross PR, Shanahan F, O’toole PW, Cotter PD (2012) The gut microbiota and its relationship to diet and obesity: new insights. Gut Microbes 3:186–202

    PubMed  PubMed Central  Google Scholar 

  • Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG (2014) Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol 28:1221–1238

    PubMed  PubMed Central  Google Scholar 

  • Coles LT, Moughan PJ, Ajay A, Darragh AJ (2013) Validation of a dual in vivo-in vitro assay for predicting the digestibility of nutrients in humans. J Sci Food Agric 93:2637–2645

    CAS  PubMed  Google Scholar 

  • Cryan JF, Dinan TG (2015) More than a gut feeling: the microbiota regulates neurodevelopment and behavior. Neuropsychopharmacology 40:241–242

    PubMed  Google Scholar 

  • DE Almada CN, Almada CN, Martinez RCR, Sant’ana AS (2016) Paraprobiotics: evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci Technol 58:96–114

    Google Scholar 

  • Deglaire A, Moughan PJ (2012) Animal models for determining amino acid digestibility in humans – a review. Br J Nutr 108:S273–S281

    CAS  PubMed  Google Scholar 

  • Dinan TG, Borre YE, Cryan JF (2014) Genomics of schizophrenia: time to consider the gut microbiome? Mol Psychiatry 19:1252–1257

    CAS  PubMed  Google Scholar 

  • Dinan TG, Stilling RM, Stanton C, Cryan JF (2015) Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res 63:1–9

    PubMed  Google Scholar 

  • Dressman JB (1986) Comparison of canine and human gastrointestinal physiology. Pharm Res 3:123–131

    CAS  PubMed  Google Scholar 

  • Egger L, Menard O, Delgado-Andrade C, Alvito P, Assuncao R, Balance S, Barbera R, Brodkorb A, Cattenoz T, Clemente A, Comi I, Dupont D, Garcia-Llatas G, Lagarda MJ, LE Feunteun S, Janssenduijghuijsen L, Karakaya S, Lesmes U, Mackie AR, Martins C, Meynier A, Miralles B, Murray BS, Pihlanto A, Picariello G, Santos CN, Simsek S, Recio I, Rigby N, Rioux L-E, Stoffers H, Tavares A, Tavares L, Turgeon S, Ulleberg EK, Vegarud GE, Vergeres G, Portmann R (2016) The harmonized INFOGEST in vitro digestion method: from knowledge to action. Food Res Int 88:217–225

    CAS  Google Scholar 

  • Egger L, Schlegel P, Baumann C, Stoffers H, Guggisberg D, Brugger C, Durr D, Stoll P, Vergeres G, Portmann R (2017) Physiological comparability of the harmonized INFOGEST in vitro digestion method to in vivo pig digestion. Food Res Int 102:567–574

    CAS  PubMed  Google Scholar 

  • Evaldson G, Heimdahl A, Kager L, Nord CE (1982) The normal human anaerobic microflora. Scand J Infect Dis Suppl 35:9–15

    CAS  PubMed  Google Scholar 

  • Feinle C, Christen M, Grundy D, Faas H, Meier O, Otto B, Fried M (2002) Effects of duodenal fat, protein or mixed-nutrient infusions on epigastric sensations during sustained gastric distension in healthy humans. Neurogastroenterol Motil 14:205–213

    CAS  PubMed  Google Scholar 

  • Fernando E, Deen KI (2005) The ileo-caecal valve: morphology and manometry suggest a combined flap valve and physiological sphincter. Gut 54:A116–A116

    Google Scholar 

  • Ferrua MJ, Kong F, Singh RP (2011) Computational modeling of gastric digestion and the role of food material properties. Trends Food Sci Technol 22:480–491

    CAS  Google Scholar 

  • Ferrua MJ, Xue ZJ, Singh RP (2014) On the kinematics and efficiency of advective mixing during gastric digestion – a numerical analysis. J Biomech 47:3664–3673

    PubMed  Google Scholar 

  • Foster JA, Neufeld K-AM (2013) Gut-brain: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312

    CAS  PubMed  Google Scholar 

  • Golding M, Wooster TJ (2009) The influence of emulsion structure and stability on lipid digestion. Curr Opin Colloid Interface Sci 15:90–101

    Google Scholar 

  • Guerra A, Etienne-Mesmin L, Livrelli V, Denis S, Blanquet-Diot S, Alric M (2012) Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol 30:591–600

    CAS  PubMed  Google Scholar 

  • Helander HF, Fandriks L (2014) Surface area of the digestive tract – revisited. Scand J Gastroenterol 49:681–689

    PubMed  Google Scholar 

  • Hoefle AS, Bangert AM, Stamfort A, Gedrich K, Rist MJ, Lee Y-M, Skurk T, Daniel H (2015) Metabolic responses of healthy or prediabetic adults to bovine whey protein and sodium caseinate do not differ. J Nutr 145:467–475

    CAS  PubMed  Google Scholar 

  • Horner KM, Schubert MM, Desbrow B, Byrne NM, King NA (2015) Acute exercise and gastric emptying: a meta-analysis and implications for appetite control. Sports Med (Auckland, NZ) 45:659–678

    Google Scholar 

  • Jalabert-Malbos M-L, Mishellany-Dutour A, Woda A, Peyron M-A (2007) Particle size distribution in the food bolus after mastication of natural foods. Food Qual Prefer 18:803–812

    Google Scholar 

  • Janssen PWM, Lentle RG, Asvarujanon P, Chambers P, Stafford KJ, Hemar Y (2007) Characterization of flow and mixing regimes within the ileum of the brushtail possum using residence time distribution analysis with simultaneous spatio-temporal mapping. J Physiol (London) 582:1239–1248

    CAS  Google Scholar 

  • Kong F, Singh RP (2008) Disintegration of solid foods in human stomach. J Food Sci 73:R67–R80

    CAS  PubMed  Google Scholar 

  • Kong F, Singh RP (2010) A human gastric simulator (HGS) to study food digestion in human stomach. J Food Sci 75:E627–E635

    CAS  PubMed  Google Scholar 

  • Kong F, Oztop MH, Singh RP, Mccarthy MJ (2011) Physical changes in white and Brown Rice during simulated gastric digestion. J Food Sci 76:E450–E457

    CAS  PubMed  Google Scholar 

  • Lentle RG, Janssen PWM, DE Loubens C, Lim YF, Hulls C, Chambers P (2013) Mucosal microfolds augment mixing at the wall of the distal ileum of the brushtail possum. Neurogastroenterol Motil 25:881–E700

    CAS  PubMed  Google Scholar 

  • Liding C, Yufen X, Tingting F, Zhenkai L, Peng W, Xuee W, Xiao Dong C (2016) Gastric emptying and morphology of a “near real” in vitro human stomach model (RD-IV-HSM). J Food Eng 183:1–8

    Google Scholar 

  • Lim R, Cabatbat JJT, Martin TLP, Kim H, Kim S, Sung J, Ghim C-M, Kim P-J (2020) Large-scale metabolic interaction network of the mouse and human gut microbiota. Sci Data 7:204

    PubMed  PubMed Central  Google Scholar 

  • Liu W, Fu D, Zhang X, Chai J, Tian S, Han J (2019) Development and validation of a new artificial gastric digestive system. Food Res Int 122:183–190

    CAS  PubMed  Google Scholar 

  • Luna RA, Foster JA (2015) Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression. Curr Opin Biotechnol 32:35–41

    CAS  PubMed  Google Scholar 

  • Macfarlane GT, Macfarlane S, Gibson GR (1998) Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35:180–187

    CAS  PubMed  Google Scholar 

  • Mackie A, Mulet-Cabero A-I, Torcello-Gomez A (2020) Simulating human digestion: developing our knowledge to create healthier and more sustainable foods. Food Funct 11:9397

    CAS  PubMed  Google Scholar 

  • Marciani L, Hall N, Pritchard SE, Cox EF, Totman JJ, Lad M, Hoad CL, Foster TJ, Gowland PA, Spiller RC (2012) Preventing gastric sieving by blending a solid/water meal enhances satiation in healthy humans. J Nutr 142:1253–1258

    CAS  PubMed  Google Scholar 

  • Marciani L, Cox EF, Pritchard SE, Major G, Hoad CL, Mellows M, Hussein MO, Costigan C, Fox M, Gowland PA, Spiller RC (2015) Additive effects of gastric volumes and macronutrient composition on the sensation of postprandial fullness in humans. Eur J Clin Nutr 69:380–384

    CAS  PubMed  Google Scholar 

  • Mars M, Stafleu A, DE Graaf C (2012) Use of satiety peptides in assessing the satiating capacity of foods. Physiol Behav 105:483–488

    CAS  PubMed  Google Scholar 

  • Mela DJ, Boland MJ (2014) Applying structuring approaches for satiety: challenges faced: lessons learned. In: Boland M, Golding M, Singh H (eds) Food structures, digestion and health. Elsevier/Academic Press

    Google Scholar 

  • Menard O, Cattenoz T, Guillemin H, Souchon I, Deglaire A, Dupont D, Picque D (2014) Validation of a new in vitro dynamic system to simulate infant digestion. Food Chem 145:1039–1045

    CAS  PubMed  Google Scholar 

  • Menard O, Picque D, Dupont D (2015) The DIDGI system. In: Verhoeckx K, Cotter P, Lopez-Exposito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H (eds) The impact of food bio-actives on gut health. In vitro and ex vivo models. Springer, Cham

    Google Scholar 

  • Mennah-Govela YA, Bornhorst GM, Singh RP (2015) Acid diffusion into Rice boluses is influenced by Rice type, variety, and presence of alpha-amylase. J Food Sci 80:E316–E325

    CAS  PubMed  Google Scholar 

  • Mills S, Stanton C, Lane JA, Smith GJ, Ross RP (2019a) Precision nutrition and the microbiome, part I: current state of the science. Nutrients 11:923

    CAS  PubMed Central  Google Scholar 

  • Mills S, Lane JA, Smith GJ, Grimaldi K, Ross RP, Stanton C (2019b) Precision nutrition and the microbiome, part II: potential opportunities and pathways to commercialisation. Nutrients 11:1468

    CAS  PubMed Central  Google Scholar 

  • Minderhoud IM, Mundt MW, Roelofs JMM, Samsom M (2004) Gastric emptying of a solid meal starts during meal ingestion: combined study using C-13-octanoic acid breath test and Doppler ultrasonography – absence of a lag phase in C-13-octanoic acid breath test. Digestion 70:55–60

    PubMed  Google Scholar 

  • Minekus M (2015) The TNO gastro-intestinal model (TIM). In: Verhoeckx K, Cotter P, Lopez-Exposito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H (eds) The impact of food bio-actives on gut health. In vitro and ex vivo models. Springer, Cham

    Google Scholar 

  • Minekus M, Havenaar R (1994) Reactor system. Netherlands patent application. 11 May 1994

    Google Scholar 

  • Minekus M, Marteau P, Havenaar R, Huisintveld JHJ (1995) A multicompartmental dynamic computer-controlled model simulating the stomach and small-intestine. Atla-Altern Lab Anim 23:197–209

    Google Scholar 

  • Mishellany-Dutour A, Peyron M-A, Croze J, Francois O, Hartmann C, Alric M, Woda A (2011) Comparison of food boluses prepared in vivo and by the AM2 mastication simulator. Food Qual Prefer 22:326–331

    Google Scholar 

  • Montoya CA, Rutherfurd SM, Moughan PJ (2015) Nondietary gut materials interfere with the determination of dietary Fiber digestibility in growing pigs when using the Prosky method. J Nutr 145:1966–1972

    CAS  PubMed  Google Scholar 

  • Morell P, Hernando I, Fiszman SM (2014) Understanding the relevance of in-mouth food processing. A review of in vitro techniques. Trends Food Sci Technol 35:18–31

    CAS  Google Scholar 

  • Norton JE, Wallis GA, Spyropoulos F, Lillford PJ, Norton IT (2014) Designing food structures for nutrition and health benefits. Annu Rev Food Sci Technol 5:177–195

    CAS  PubMed  Google Scholar 

  • Paintaud G, Thibault P, Queneau PE, Magnette J, Berard M, Rumbach L, Bechtel PR, Carayon P (1998) Intraindividual variability of paracetamol absorption kinetics after a semi-solid meal in healthy volunteers. Eur J Clin Pharmacol 53:355–359

    CAS  PubMed  Google Scholar 

  • Pavlov IP (1902) The work of the digestive glands (trans: Thompson WH). Charles Griffin & Co. Ltd., London

    Google Scholar 

  • Peng Z, Wu P, Wang J, Dupont D, Menard O, Jeantet R, Chen XD (2021) Achieving realistic gastric emptying curve in an advanced dynamic in vitro human digestion system: experiences with cheese-a difficult to empty material dagger. Food Funct 12:3965–3977. https://doi.org/10.1039/d0fo03364b

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro AC, Lad M, Silva HD, Coimbra MA, Boland M, Vicente AA (2013) Unravelling the behaviour of curcumin nanoemulsions during in vitro digestion: effect of the surface charge. Soft Matter 9:3147–3154

    CAS  Google Scholar 

  • Qing G, Aiqian Y, Lad M, Dalgleish D, Harjinder S (2014) Effect of gel structure on the gastric digestion of whey protein emulsion gels. Soft Matter 10:1214–1223

    Google Scholar 

  • Rashidinejad A, Bahrami A, Rehman A, Rezaei A, Babazadeh A, Singh H, Jafari SM (2020) Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2020.1854169

  • Rastall RA, Gibson GR (2015) Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr Opin Biotechnol 32:42–46

    CAS  PubMed  Google Scholar 

  • Reis P, Holmberg K, Watzke H, Leser ME, Miller R (2009) Lipases at interfaces: a review. Adv Colloid Interf Sci 147–148:237–250

    Google Scholar 

  • Reynaud Y, Couvent A, Manach A, Forest D, Lopez M, Picque D, Souchon I, Remond D, Dupont D (2021) Food-dependent set-up of the DGDGI dynamic in vitro system: correlation with the porcine model for protein digestion of a soya-based food. Food Chem 341:128276

    CAS  PubMed  Google Scholar 

  • Rumney CJ, Rowland IR (1992) Invivo and invitro models of the human colonic flora. Crit Rev Food Sci Nutr 31:299–331

    CAS  PubMed  Google Scholar 

  • Salonen A, DE Vos WM (2014) Impact of diet on human intestinal microbiota and health. Annu Rev Food Sci Technol 5(5):239–262

    CAS  PubMed  Google Scholar 

  • Sanchez B, Ruiz L, Gueimonde M, Ruas-Madiedo P, Margolles A (2012) Toward improving technological and functional properties of probiotics in foods. Trends Food Sci Technol 26:56–63

    CAS  Google Scholar 

  • Spetter MS, DE Graaf C, Mars M, Viergever MA, Smeets PAM (2014) The sum of its parts-effects of gastric distention, nutrient content and sensory stimulation on brain activation. PLoS One 9:e90872

    PubMed  PubMed Central  Google Scholar 

  • Stirrup V, Ledingham SJ, Thomas M, Pye G, Evans DF (1990) Redox potential measurement in the gastrointestinal-tract in man. Gut 31:A1171–A1171

    Google Scholar 

  • Swift EJ (1918) Psychology and the day’s work: a study in the application of psychology to daily life. Charles Scribner’s Sons, New York

    Google Scholar 

  • Thuenemann EC, Mandalari G, Rich GT, Faulks RM (2015) Dynamic gastric model (DGM). In: Verhoeckx K, Cotter P, Lopez-Exposito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H (eds) The impact of food bio-actives on gut health. In vitro and ex vivo models. Springer, Cham

    Google Scholar 

  • Ulluwishewa D, Anderson RC, Young W, Mcnabb WC, VAN Baarlen P, Moughan PJ, Wells JM, Roy NC (2015) Live Faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier. Cell Microbiol 17:226–240

    CAS  PubMed  Google Scholar 

  • Valdes L, Salazar N, Gonzalez S, Arboleya S, Rios-Covian D, Genoves S, Ramon D, De Los Reyes-Gavilan CG, Ruas-Madiedo P, Gueimonde M (2017) Selection of potential probiotic bifidobacteria and prebiotics for elderly by using in vitro faecal batch cultures. Eur Food Res Technol 243:157–165

    CAS  Google Scholar 

  • van den Abbeele P, Grootaert C, Marzorati M, Possemiers S, Verstraete W, Gerard P, Rabot S, Bruneau A, El Aidy S, Derrien M, Zoetendal E, Kleerebezem M, Smidt H, van de Wiele T (2010) Microbial community development in a dynamic gut model is reproducible, Colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl Environ Microbiol 76:5237–5246

    PubMed  PubMed Central  Google Scholar 

  • van den Abbeele P, Roos S, Eeckhaut V, Mackenzie DA, Derde M, Verstraete W, Mazorati M, Possemiers S, Vanhoeck B, Van Immerseel F, van de Wiele T (2012) Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb Biotechnol 5(1):106–115

    PubMed  Google Scholar 

  • van der Werf MJ, Venema K (2001) Bifidobacteria: genetic modification and the study of their role in the colon. J Agric Food Chem 49:378–383

    PubMed  Google Scholar 

  • Venema K, van den Abbeele P (2013) Experimental models of the gut microbiome. Best Pract Res Clin Gastroenterol 27:115–126

    CAS  PubMed  Google Scholar 

  • Verhoeckx K, Cotter P, Lopez-Exposito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H (2015) The impact of food bio-actives on gut health. In vitro and ex vivo models. Springer, Cham

    Google Scholar 

  • Wagener S, Shankar KR, Turnock RR, Lamont GL, Baillie CT (2004) Colonic transit time – what is normal? J Pediatr Surg 39:166–169

    CAS  PubMed  Google Scholar 

  • Wang X, Chen J (2017) Food oral processing: recent developments and challenges. Curr Opin Colloid Interface Sci 28:22–30

    CAS  Google Scholar 

  • Wang Q, Ellis PR (2014) Oat beta-glucan: physico-chemical characteristics in relation to its blood-glucose and cholesterol-lowering properties. Br J Nutr 112(Suppl 2):S4–S13

    CAS  PubMed  Google Scholar 

  • Wang M, Ahrne S, Jeppsson B, Molin G (2005) Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54:219–231

    CAS  PubMed  Google Scholar 

  • Wang YT, Mohammed SD, Farmer AD, Wang D, Zarate N, Hobson AR, Hellstrom PM, Semler JR, Kuo B, Rao SS, Hasler WL, Camilleri M, Scott SM (2015) Regional gastrointestinal transit and pH studied in 215 healthy volunteers using the wireless motility capsule: influence of age, gender, study country and testing protocol. Aliment Pharmacol Ther 42:761–772

    CAS  PubMed  Google Scholar 

  • Weilang X, Bronlund JE (2010) Mastication robots. Biological inspiration to implementation. Springer

    Google Scholar 

  • Wickham MJS, Faulks RM, Mann J, Mandalari G (2012) The design, operation, and application of a dynamic gastric model. Dissolut Technol 19:15–22

    CAS  Google Scholar 

  • Wiley NC, Cryan JF, Dinan TG, Ross RP, Stanton C (2021) Production of Psychoactive Metabolites by Gut Bacteria. Modern Trends Psychiatry 32:74–99. https://doi.org/10.1159/000510419

    Article  Google Scholar 

  • Wilson CG (2010) The transit of dosage forms through the colon. Int J Pharm 395:17–25

    CAS  PubMed  Google Scholar 

  • Woda A, Mishellany-Dutour A, Batier L, Francois O, Meunier JP, Reynaud B, Alric M, Peyron MA (2010) Development and validation of a mastication simulator. J Biomech 43:1667–1673

    CAS  PubMed  Google Scholar 

  • Wolever TMS, Gibbs AL, Brand-Miller J, Duncan AM, Hart V, Lamarche B, Tosh SM, Duss R (2011) Bioactive oat beta-glucan reduces LDL cholesterol in Caucasians and non-Caucasians. Nutr J 10:130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang Y, Wen H, Yu Y, Li M, Fu X, Huang S (2020) Gut on chip: recreating human intestine in vitro. J Tissue Eng 1:1–13

    Google Scholar 

  • Yuen K-H (2010) The transit of dosage forms through the small intestine. Int J Pharm 395:9–16

    CAS  PubMed  Google Scholar 

  • Zhou L, Foster JA (2015) Psychobiotics and the gut-brain axis: in the pursuit of happiness. Neuropsychiatr Dis Treat 11:715–723

    PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Hollis JH (2014) Gastric emptying rate, glycemic and appetite response to a liquid meal in lean and overweight males. Int J Food Sci Nutr 65:615–620

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Boland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boland, M. (2022). Biophysical and Gastro-Intestinal Engineering Aspects of Nutrient Absorption and Physiological Function. In: Vicente, A., Silva, C., Gonzalez, C. (eds) Delivering Functionality in Foods. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-83570-5_5

Download citation

Publish with us

Policies and ethics