Skip to main content
Log in

Overexpression of V-ATPase c Subunit Gene (VHA-c) from Antarctic Notothenioid Fish Improves Tolerance of Transgenic Arabidopsis to Low Temperature

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

To understand the possible role of vacuolar H+-ATPase c subunit in resistance to low temperature, the VHA-c gene was isolated from Antarctic notothenioid fishes (Dissostichus mawsoni), and two overexpression plants were constructed and obtained from Arabidopsis: VHA-c8 and VHA-c11. The physiological responses of VHA-c overexpression plants and wild-type Arabidopsis to low temperature were studied at 4 °C. Arabidopsis with overexpression of VHA-c showed stronger low-temperature tolerance than wild type. The membrane damage indexes (malondialdehyde and membrane leakage rate) of wild-type plants were significantly higher than those of overexpressing lines VHA-c8 and VHA-c11, and wild-type plants are more susceptible to photoinhibition than VHA-c8 and VHA-c11 at low temperature. In addition, the content of various osmoregulatory substances in wild-type plants, including proline, soluble protein and soluble sugar, was significantly lower than that of VHA-c8 and VHA-c11. However, the ATP content of VHA-c8 and VHA-c11 was significantly higher than that of wild-type plants. The change of ATP content is consistent with the change of osmoregulatory substances content, and is opposite to the change of membrane damage indexes. These results suggest that VHA-c gene may provide energy for the synthesis of osmoregulatory substances by promoting the increase of ATP synthesis, so as to improve the cold resistance of Arabidopsis. In addition, the increased ATP can also be used as a compensatory strategy under low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information.

References

  • Amato P, Christner BC (2009) Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis. Appl Environ Microb 75(3):711–718

    Article  CAS  Google Scholar 

  • Anwar A, Bai L, Miao L, Liu S, Yu X, Li Y (2018) 24-Epibrassinolide ameliorates endogenous hormone levels to enhance low-temperature stress tolerance in cucumber seedlings. Int J Mol Sci 19(9):2497

    Article  PubMed  PubMed Central  Google Scholar 

  • Arechaga I, Jones PC (2001) Quick guide: ATP synthase. Curr Biol 11(4):R117–R117

    Article  CAS  PubMed  Google Scholar 

  • Baisakh N, Ramanarao MV, Rajasekaran K, Subudhi P, Janda J, Galbraith D, Vanier C, Pereira A (2012) Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel. Plant Biotechnol J 10(4):453–464

    Article  CAS  PubMed  Google Scholar 

  • Bhandari SR, Yong HK, Lee JG (2018) Detection of temperature stress using chlorophyll fluorescence parameters and stress-related chlorophyll and proline content in Paprika (Capsicum annuum L.) seedlings. Korean J Hortic Sci 36:619–629

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brandhorst D, Brandhorst H, Hering BJ, Federlin K, Bretzel RG (1999) Large variability of the intracellular ATP content of human islets isolated from different donors. J Mol Med 77:93–95

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Cheng CHC, Zhang J, Cao L, Chen L, Zhou L, Jin Y, Ye H, Deng C, Dai Z (2008) Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. P Natl Acad Sci USA 105:12944–12949

    Article  CAS  Google Scholar 

  • Chen L, Zhong H, Feng R, Guo QQ, Hu XP, Li XB (2011) A novel cold-regulated gene, COR25, of Brassica napus is involved in plant response and tolerance to cold stress. Plant Cell Rep 30:463–471

    Article  PubMed  Google Scholar 

  • Chen J, Xue B, Xia X, Yin W (2013) A novel calcium-dependent protein kinase gene from Populus euphratica, confers both drought and cold stress tolerance. Biochem Bioph Res Co 441(3):630–636

    Article  CAS  Google Scholar 

  • Chen LB, Lu Y, Li WH, Ren YD, Yu MC, Jiang SW, Fu YX, Wang J, Peng SH, Bilyk KT, Murphy KR, Zhuang X, Hune M, Zhai WY, Wang W, Xu QH, Cheng CC (2019) The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonia robalo genomes. GigaScience 8:1–16

    Article  Google Scholar 

  • Choi YO, Park JH, Song YS, Lee W, Moriyama Y, Han C, Leem CH, Jang YJ (2007) Involvement of vesicular H+-ATPase in insulin-stimulated glucose transport in 3T3-F442A adipocytes. Endocr J 54(5):733–743

    Article  CAS  PubMed  Google Scholar 

  • Cosmin B, Basu SK (2009) The effect of low temperature on metabolism of membrane lipids in plants and associated gene expression. Plant Omics 2(2):78–84

    Google Scholar 

  • Delauney AJ, Hu C, Kishor P, Verma D (1993) Cloning of ornithine delta-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. J Biol Chem 268(25):18673–18678

    Article  CAS  PubMed  Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid Peroxidation. Method Enzymol 186:421–431

    Article  CAS  Google Scholar 

  • Draper SR, Watson SE (2010) The use of disc electrophoresis to evaluate protein changes accompanying exposure of perennial ryegrass (Lolium perenne L.) to cold hardening conditions. J Sci Food Agr 22(10):506–508

    Article  Google Scholar 

  • Ebrahim MK, Zingsheim O, El-Shourbagy MN, Moore PH, Komor E (1998) Growth and sugar storage in sugarcane grown at temperatures below and above optimum. J Plant Physiol 153(5–6):593–602

    Article  CAS  Google Scholar 

  • Esashi Y, Nagayama T, Satoh M, Saijoh K (1983) A bimodal germination response to temperature in cocklebur seeds. II. ATP and adenylate pool. Plant Cell Environ 6(1):55–63

    Article  CAS  Google Scholar 

  • Falk S, Samuelsson G, Öquist G (2010) Temperature-dependent photoinhibition and recovery of photosynthesis in the green-alga Chlamydomonas reinhardtii acclimated to 12 and 27-degrees-c. Physiol Plantarum 78(2):173–180

    Article  Google Scholar 

  • Finbow ME, Harrison MA (1997) The vacuolar H+-ATPase: a universal proton pump of eukaryotes. Biochem J 324:697–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fursova OV, Pogorelko GV, Tarasov VA (2009) Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429(1–2):98–103

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA—General Subjects 990(1):87–92

    Article  CAS  Google Scholar 

  • Gong R, Yang W, Lia M, Wang Z, Zhang Y (2017) Effects of low temperature stress on the physiological properties of “Dawuxing” young loquat fruit. Fresen Environ Bull 25(12):8255–8262

    Google Scholar 

  • Gu L, Cheng H (2014) Isolation, molecular cloning and characterization of a cold-responsive gene, AmDUF1517, from Ammopiptanthus mongolicus. Plant Cell Tiss Org 117(2):201–211

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidari P, Entazari M, Ebrahimi A, Ahmadizadeh M, Barcaccia G (2021) Exogenous EBR ameliorates endogenous hormone contents in tomato species under low-temperature stress. Horticulturae 7(4):1–13

    Article  Google Scholar 

  • Hirata T, Iwamoto-Kihara A, Sun-Wada GH, Okajima T, Wada Y, Futai M (2003) Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G and C subunits. J Biol Chem 278(26):23714–23719

    Article  CAS  PubMed  Google Scholar 

  • Hu DG, Wang SH, Hua L, Ma QJ, Yao YX, You CX, Hao YJ (2012) Overexpression of MdVHA-B, a V-ATPase gene from apple, confers tolerance to drought in transgenic tomato. Sci Hortic 145:94–101

    Article  CAS  Google Scholar 

  • Jamei R, Heidari R, Khara J, Zare S (2009) Hypoxia induced changes in the lipid peroxidation, membrane permeability, reactive oxygen species generation, and antioxidative response systems in zea mays leaves. Turk J Biol 33(1):45–52

    CAS  Google Scholar 

  • Javier OGP, Beatriz GA, Natalia T, Leonel H, Esteban PF, Ezequiel M (2020) Cold acclimation and freezing tolerance in three Eucalyptus species: a metabolomic and proteomic approach. Plant Physiol Bioch 154:316–327

    Article  Google Scholar 

  • Jiang Y, Joyce DC, Jiang W, Lu W (2004) Effects of chilling temperatures on ethylene binding by banana fruit. Plant Growth Regul 43(2):109–115

    Article  CAS  Google Scholar 

  • Kabała K, Russak MJ, Reda M, Migocka M (2013) Transcriptional regulation of the V-ATPase subunit c and V-PPase isoforms in Cucumis sativus under heavy metal stress. Physiol Plantarum 150(1):32–45

    Article  Google Scholar 

  • Karimzadeh G, Sharifi-Sirchi GR, Jalali-Javaran M, Dehghani H, Francis D (2006) Soluble proteins induced by low temperature treatment in the leaves of spring and winter wheat cultivars. Pak J Bot 38(4):1015–1026

    Google Scholar 

  • Kuk YI, Shin JS (2007) Mechanisms of low-temperature tolerance in cucumber leaves of various ages. J Am Soc Hortic 132(3):294–301

    Article  Google Scholar 

  • Lee JH, Oh MM (2015) Short-term low temperature increases phenolic antioxidant levels in kale. Hortic Environ Biote 56(5):588–596

    Article  CAS  Google Scholar 

  • Levitt R (1980) Understanding sexuality and spinal cord injury. J Neurosci Nurs 12(2):88–89

    Article  CAS  Google Scholar 

  • Liu H, Yu C, Li H, Ouyang B, Wang T, Zhang J, Wang X, Ye Z (2015) Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci 231:198–211

    Article  CAS  PubMed  Google Scholar 

  • Livingston IIIDP, Hincha DK, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci 66(13):2007–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Tang H, Zhang Y (2011) Production of reactive oxygen species and antioxidant metabolism about strawberry leaves to low temperatures. J Agr Sci 3(2):89–96

    Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78(3):389–398

    Article  CAS  Google Scholar 

  • Moloi MJ, van der Merwe R (2021) Drought tolerance responses in vegetable-type soybean involve a network of biochemical mechanisms at flowering and pod-filling stages. Plants 10(8):1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison BA, Shain DH (2008) An AMP nucleosidase gene knockout in Escherichia coli elevates intracellular ATP levels and increases cold tolerance. Biol Letters 4(1):53–56

    Article  CAS  Google Scholar 

  • Napolitano MJ, Shain DH (2004) Four kingdoms on glacier ice: convergent energetic processes boost energy levels as temperatures fall. Proc R Soc B Biol Sci 271:273–276

    Article  Google Scholar 

  • Napolitano MJ, Shain DH (2005) Distinctions in adenylate metabolism among organisms inhabiting temperature extremes. Extremoph Life Under Extreme Cond 9(2):93–98

    Article  CAS  Google Scholar 

  • Napolitano MJ, Nagele RG, Shain DH (2004) The ice worm, Mesenchytraeus solifugus, elevates adenylate levels at low physiological temperature. Comp Biochem Physiol A 137(1):227–235

    Article  Google Scholar 

  • Ottander C, Hundal T, Andersson B, Huner NPA, Oquist G (1993) Photosystem II reaction centres stay intact during low temperature photoinhibition. Photosynth Res 35(2):191–200

    Article  CAS  PubMed  Google Scholar 

  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qP and Fv’/Fm’; without measuring Fo. Photosynth Res 54:135–142

    Article  CAS  Google Scholar 

  • Peng T, Zhu X, Duan N, Liu JH (2015) PtrBAM1, a β-amylase-coding gene of Poncirus trifoliata, is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels. Plant Cell Environ 37(12):2754–2767

    Article  Google Scholar 

  • Pinedo ML, Hernández GF, Conde RD, Tognetti JA (2000) Effect of low temperature on the protein metabolism of wheat leaves. Biol Plantarum 43(3):363–367

    Article  CAS  Google Scholar 

  • Pomeroy MK, Andrews CJ (1985) Effect of low temperature and calcium on survival and membrane properties of isolated winter wheat cells. Plant Physiol 78(3):484–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popov VN, Naraikina NV (2020) Change of antioxidant enzyme activity during low-temperature hardening of Nicotiana tabacum L. and Secale cereale L. Russ J Plant Physiol 67(5):898–905

  • Qian Z, Zhao YJ, Zhao BC, Ge RC, Li M, Shen YZ, Huang ZJ (2009) Cloning and functional analysis of wheat V-H+-ATPase subunit genes. Plant Mol Biol 69(1–2):33–46

    Google Scholar 

  • Rácz I, Páldi E, Szalai G, Janda T, Pál M, Lásztity D (2008) S-methylmethionine reduces cell membrane damage in higher plants exposed to low-temperature stress. J Plant Physiol 165(14):1483–1490

    Article  PubMed  Google Scholar 

  • Ross MS, Ruiz PL, Sah JP, Hanan EJ (2010) Chilling damage in a changing climate in coastal landscapes of the subtropical zone: a case study from south Florida. Global Change Biol 15(7):1817–1832

    Article  Google Scholar 

  • Shou H, Bordallo P, Fan JB, Yeakley JM, Bibikova M, Sheen J, Wang K (2004) Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci USA 101(9):3298–3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva JMD, Arrabaça MC (2004) Contributions of soluble carbohydrates to the osmotic adjustment in the C4 grass Setaria sphacelata: a comparison between rapidly and slowly imposed water stress. J Plant Physiol 161:551–555

    Article  PubMed  Google Scholar 

  • Souza GM, Cardoso V, Gonçalves AN (2004) Proline content and protein patterns in Eucalyptus grandis shoots submitted to high and low temperature shocks. Braz Arch Biol Techn 47(3):355–362

    Article  CAS  Google Scholar 

  • Tahmasebi A, Pakniyat H (2015) Comparative analysis of some biochemical responses of winter and spring wheat cultivars under low temperature. Int J Agron Agric Res 7(4):14–22

    Google Scholar 

  • Takuhara Y, Kobayashi M, Suzuki S (2011) Low-temperature-induced transcription factors in grapevine enhance cold tolerance in transgenic Arabidopsis plants. J Plant Physiol 168(9):967–975

    Article  CAS  PubMed  Google Scholar 

  • Terashima I, Noguchi K, Itoh-Nemoto T, Park Y, Tanaka K (2010) The cause of PSI photoinhibition at low temperatures in leaves of Cucumis sativus, a chilling-sensitive plant. Physiol Plantarum 103(3):295–303

    Article  Google Scholar 

  • Tripathi R, Rai PK, Rai A, Singh S (2019) Changes in water soluble protein profile of Antarctic cyanobacterium Nostoc commune under temperature downshift from 25°C to 5°C. Geomicrobiol J 36(3):1–7

    Article  Google Scholar 

  • Tsonev T, Velikova V, Lambreva M, Stefanov D (2000) Recovery of the photosynthetic apparatus in bean plants after high- and low-temperature induced photoinhibition. Bulg J Agric Sci 25(3–4):45–53

    Google Scholar 

  • Turina P (2022) Modulation of the H+/ATP coupling ratio by ADP and ATP as a possible regulatory feature in the F-type ATP synthases. Front Mol Biosci 9:1023031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanjildorj E, Bae TW, Riu KZ, Kim SY, Lee HY (2005) Overexpression of Arabidopsis ABF3 gene enhances tolerance to drought and cold in transgenic lettuce (Lactuca sativa). Plant Cell Tiss Org 83(1):41–50

    Article  CAS  Google Scholar 

  • Walworth AE, Rowland LJ, Polashock JJ, Hancock JF, Song GQ (2012) Overexpression of a blueberry-derived CBF gene enhances cold tolerance in a southern highbush blueberry cultivar. Mol Breed 30(3):1313–1323

    Article  CAS  Google Scholar 

  • Wang BS, Lüttge U, Ratajczak R (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52(365):2355–2365

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhou A, Li Y, Li SS, Zhang XH, Che DD (2016) Overexpression of IrlVHA-c, A vacuolar-type H+-ATPase c subunit gene from Iris lactea, enhances salt tolerance in tobacco. Plant Mol Biol Rep 34(5):877–885

    Article  CAS  Google Scholar 

  • Wang P, Guo Y, Wang Y, Gao C (2020) Vacuolar membrane H+-ATPase c`` subunit gene (ThVHAc``1) from Tamarix hispida Willd improves salt stress tolerance. Plant Physiol Biochem 157:370–378

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Forgac M (2000) Subunit D (Vma8p) of the yeast vacuolar H+-ATPase plays a role in coupling of proton transport and ATP hydrolysis. J Biol Chem 275(29):22075–22081

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Wu Z, Chen W, Su M (2005) Effect of low temperature on relative enzyme activity and membrane peroxidization of lychee fruits. Acta Hort 665:359–364

    Article  CAS  Google Scholar 

  • Xu C, Zheng L, Gao C, Wang C, Liu G, Jing J, Wang Y (2010) Overexpression of a vacuolar H+-ATPase c subunit gene mediates physiological changes leading to enhanced salt tolerance in transgenic tobacco. Plant Mol Biol Rep 29(2):424–430

    Article  Google Scholar 

  • Xu Z, Zhao Y, Ge Y, Peng J, Meng D, Yang G (2016) Characterization of a vacuolar H+-ATPase G subunit gene from Juglans regia (JrVHAG1) involved in mannitol-induced osmotic stress tolerance. Plant Cell Rep 36(3):407–418

    Article  PubMed  Google Scholar 

  • Yadegari LZ, Reza H, Jirair C (2008) Chilling pretreatment causes some changes in respiration, membrane permeability and some other factors in soybean seedlings. Res J Biol Sci 3:1054–1059

    Google Scholar 

  • Yang X, Wang X, Ji L, Yi Z, Fu C, Ran J, Hu R, Zhou G (2015) Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Rep 34(6):943–958

    Article  CAS  PubMed  Google Scholar 

  • Yooyongwech S, Sugaya S, Sekozawa Y, Gemma H (2009) Differential adaptation of high- and low-chill dormant peaches in winter through aquaporin gene expression and soluble sugar content. Plant Cell Rep 28(11):1709–1715

    Article  CAS  PubMed  Google Scholar 

  • Yu ZC, Wang TQ, Luo YN, Zheng XT, Peng CL (2021) Overexpression of the V-ATPase c subunit gene from Antarctic notothenioid fishes enhances freezing tolerance in transgenic Arabidopsis plants. Plant Physiol Biochem 160:365–376

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Xie JZ (2013) Effects of low temperature stress on resistance indices of sympodial bamboo seedlings. Adv Mater Res 726–731:4241–4247

    Article  Google Scholar 

  • Zhang H, Zhou RX, Zhang LJ, Wang RY, An LZ (2007) CbLEA, a novel LEA gene from Chorispora bungeana, confers cold tolerance in transgenic tobacco. J Plant Biol 50:336–343

    Article  CAS  Google Scholar 

  • Zhang YP, Jia FF, Zhang XM, Qiao YX, Shi K, Zhou YH, Yu JQ (2012) Temperature effects on the reactive oxygen species formation and antioxidant defence in roots of two cucurbit species with contrasting root zone temperature optima. Acta Physiol Plant 34(2):713–720

    Article  CAS  Google Scholar 

  • Zhang XH, Li B, Hu YG, Chen L, Min DH (2014) The wheat E subunit of V-type H+-ATPase is involved in the plant response to osmotic stress. Int J Mol Sci 15(9):16196–16210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou AM, Bu YY, Takano T, Zhang XX, Liu SK (2016) Conserved V-ATPase c subunit plays a role in plant growth by influencing V-ATPase-dependent endosomal trafficking. Plant Biotechnol J 14(1):271–283

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (31870374) and the National Special Project for Genetic Improving of Agricultural Species (2009ZX08009003B).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, TQW; Data curation, ZCY; Investigation, WH; Supervision, LBC and CLP; Writing—original draft, WL, and ZCY.

Corresponding author

Correspondence to Changlian Peng.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Yu, Z., Wang, T. et al. Overexpression of V-ATPase c Subunit Gene (VHA-c) from Antarctic Notothenioid Fish Improves Tolerance of Transgenic Arabidopsis to Low Temperature. J. Plant Biol. 66, 567–578 (2023). https://doi.org/10.1007/s12374-023-09407-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-023-09407-3

Keywords

Navigation