Skip to main content
Log in

Over-expression of FaGalLDH Increases Ascorbic Acid Concentrations and Enhances Salt Stress Tolerance in Arabidopsis thaliana

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

The strawberry (Fragaria × ananassa) is an economically important perennial crop plant, and its fruits are rich in vitamin C (l-ascorbic acid [AsA]) and other nutrients. l-galactono-1,4-lactone dehydrogenase (GalLDH) is a key enzyme in the terminal step of AsA biosynthesis pathway in plants. Here, the GalLDH gene (FaGalLDH) was cloned from ‘Benihoppe’ strawberries. AsA content increased during fruit development and peaked at the red-ripening stage, and AsA concentrations in different tissues were correlated with enzyme activity and transcription level of FaGalLDH. Transient over-expression of FaGalLDH in strawberry fruit increased its overall expression and AsA production significantly, whereas transient RNAi of FaGalLDH decreased its expression and AsA content. Furthermore, the optimum pH and temperature for FaGalLDH activity were 8.0 and 25 °C, respectively. Ectopic expression of the FaGalLDH gene in Arabidopsis resulted in higher AsA content and enzyme activity in transgenic lines than in wild-type plants. FaGalLDH over-expression resulted in enhanced tolerance to salt stress due to reduced accumulation of malondialdehyde, H2O2, and O2.−, as well as higher survival rates, root length, proline content, and superoxide dismutase, peroxidase, and catalase activities. These results provide useful information regarding AsA biosynthesis and salt tolerance, which may help to improve strawberry fruit quality and productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agius F, González-Lamothe R, Caballero JL, Muñoz-Blanco J, Botell MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a d-galacturonic acid reductase. Nat Biotechnol 21:177–181

    Article  CAS  Google Scholar 

  • Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613

    Article  Google Scholar 

  • Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldetet P (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme l-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiol 145:1408–1422

    Article  CAS  Google Scholar 

  • Barth C, De Tullio M, Conklin PL (2006) The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot 57(8):1657–1665

    Article  CAS  Google Scholar 

  • Bartoli CG, Guiamet JJ, Kiddle G, Pastori GM, Cagno RD, Theodoulou FL, Foyer CH (2005) Ascorbate content of wheat leaves is not determined by maximal l-galactono-1, 4-lactone dehydrogenase (GalLDH) activity under drought stress. Plant Cell Environ 28:1073–1081

    Article  CAS  Google Scholar 

  • Carvalho RF, Carvalho SD, O’Grady K, Folta KM (2016) Agroinfiltration of strawberry fruit-a powerful transient expression system for gene validation. Curr Plant Biol 6:19–37

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  Google Scholar 

  • Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970

    Article  CAS  Google Scholar 

  • Cruz-Rus E, Amaya I, Sánchez-Sevilla JF, Botella MA, Valpuesta V (2011) Regulation of l-ascorbic acid content in strawberry fruits. J Exp Bot 62(12):4191–4201

    Article  CAS  Google Scholar 

  • Davey MW, Montagu MV, Inzé D, Sanmartín M, Kanellis AK, Smirnoff N, Benzie IJ, Strain JJ, Favell D, Fletcher J (2000) Plant l-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Food Sci Agr 80:825–860

    Article  CAS  Google Scholar 

  • Giovannoni JJ (2007) Completing a pathway to plant vitamin C synthesis. Proc Natl Acad Sci USA 104:9109–9110

    Article  CAS  Google Scholar 

  • Guo X, Liu RH, Fu X, Sun X, Tang K (2013) Over-expression of l-galactono-γ-lactone dehydrogenase increases vitamin C, total phenolics and antioxidant activity in lettuce through bio-fortification. Plant Cell Tiss Organ Cult 114:225–236

    Article  CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  CAS  Google Scholar 

  • Imai T, Karita S, Shiratori G, Hattori M, Nunome T, Oba K, Hirai M (1998) l-galactono-γ-lactone dehydrogenase from sweet potato: purification and cDNA sequence analysis. Plant Cell Physiol 39:1350–1358

    Article  CAS  Google Scholar 

  • Ioannidi E, Kalamaki MS, Engineer C, Pateraki I, Alexandrou D, Mellidou I, Giovannonni J, Kanellis AK (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60(2):663–678

    Article  CAS  Google Scholar 

  • Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72(5):1143–1154

    Article  CAS  Google Scholar 

  • Kakan X, Yu Y, Li S, Li X, Huang R, Wang J (2021) Ascorbic acid modulation by ABI4 transcriptional repression of VTC2 in the salt tolerance of Arabidopsis. BMC Plant Biol 21(1):112

    Article  CAS  Google Scholar 

  • Kong F, Deng Y, Zhou B, Wang G, Wang Y, Meng Q (2014) A chloroplast-targeted DnaJ protein contributes to maintenance of photosystem II under chilling stress. J Exp Bot 65(1):143–158

    Article  CAS  Google Scholar 

  • Landi M, Fambrini M, Basile A, Salvini M, Guidi L, Pugliesi C (2015) Overexpression of L-galactono-1,4-lactone dehydrogenase (L-GalLDH) gene correlates with increased ascorbate concentration and reduced browning in leaves of Lactuca sativa L. after cutting. Plant Cell Tiss Organ Cult 123:109–120

    Article  CAS  Google Scholar 

  • Leferink NG, van den Berg WA, van Berkel WJ (2008) L-Galactono-γ-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis. FEBS J 275(4):713–726

    Article  CAS  Google Scholar 

  • Li M, Liang D, Pu F, Ma F, Hou C, Lu T (2009) Ascorbate levels and the activity of key enzymes in ascorbate biosynthesis and recycling in the leaves of 22 Chinese persimmon cultivars. Sci Hortic 120:250–256

    Article  CAS  Google Scholar 

  • Li MJ, Gao J, Ma FW, Liang D, Hou CM (2010) Relationship between expressions of GalDH and GalLDH and ascorbate content in apple fruits. Scientia Agricultura Sinica 43(2):351–357

    CAS  Google Scholar 

  • Linster CL, Clarke SG (2008) l-Ascorbate biosynthesis in higher plants: the role of VTC2. Trends Plant Sci 13(11):567–573

    Article  CAS  Google Scholar 

  • Liu W, An HM, Yang M (2013) Overexpression of Rosa roxburghii L-galactono-1,4-lactone dehydrogenase in tobacco plant enhances ascorbate accumulation and abiotic stress tolerance. Acta Physiol Plant 35:1617–1624

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2△△CT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Loewus FA (1999) Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry 52:193–210

    Article  CAS  Google Scholar 

  • Lorence A, Chevone BI, Mendes P, Nessler C (2004) myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205

    Article  CAS  Google Scholar 

  • Ma CH, Ma FW, Li MJ, Han MY, Shu HR (2006) Effects of exogenous ascorbic acid on senescence of detached apple leaves. Acta Horticulturae Sinica 33:1179–1184

    CAS  Google Scholar 

  • Maruta T, Yonemitsu M, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S (2008) Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. J Biol Chem 283(43):28842–28851

    Article  CAS  Google Scholar 

  • Matamoros MA, Dalton DA, Ramos J, Clemente MR, Rubio MC, Becana M (2003) Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis. Plant Physiol 133:499–509

    Article  CAS  Google Scholar 

  • Nascimento JR, Higuchi BK, Gomez ML, Oshiro RA, Lajolo FM (2005) l-Ascorbate biosynthesis in strawberries: l-Galactono-1,4-lactone dehydrogenase expression during fruit development and ripening. Postharvest Biol Technol 38:34–42

    Article  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Ôba K, Ishikawa S, Nishikawa M, Mizuno H, Yamamoto T (1995) Purification and properties of l-galactono-γ-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. J Biochem 117(1):120–124

    Article  Google Scholar 

  • Østergaard J, Persiau G, Davey MW, Bauw G, Van Montagu M (1997) Isolation of a cDNA coding for l-galactono-γ-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants: purification, characterization, cDNA cloning, and expression in yeast. J Biol Chem 272(48):30009–30016

    Article  Google Scholar 

  • Pateraki I, Sanmartin M, Kalamaki MS, Gerasopoulos D, Kanellis AK (2004) Molecular characterization and expression studies during melon fruit development and ripening of l-galactono-1,4-lactone dehydrogenase. J Exp Bot 55(403):1623–1633

    Article  CAS  Google Scholar 

  • Rice-Evans C, Miller NJ (1995) Antioxidants-the case for fruit and vegetables in the diet. Br Food J 97:35–40

    Article  Google Scholar 

  • Rodríguez-Ruiz M, Mateos RM, Codesido V, Corpas FJ, Palma JM (2017) Characterization of the galactono-1,4-lactone dehydrogenase from pepper fruits and its modulation in the ascorbate biosynthesis. Role of Nitric Oxide. Redox Biol 12:171–181

    Article  Google Scholar 

  • Schimmeyer J, Bock R, Meyer EH (2016) l-Galactono-1,4-lactone dehydrogenase is an assembly factor of the membrane arm of mitochondrial complex I in Arabidopsis. Plant Mol Biol 90:117–126

    Article  CAS  Google Scholar 

  • Shi SG, Ma FW, Li YH, Feng FJ, Shang ZZ (2012) Overexpression of L-galactono-1, 4-lactone dehydrogenase (GLDH) in Lanzhou lily (Lilium davidii var. unicolor) via particle bombardment-mediated transformation. In Vitro Cell Dev Biol-Plant 48:1–6

    Article  Google Scholar 

  • Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78:661–669

    Article  CAS  Google Scholar 

  • Smirnoff N, Conklin PL, Loewus FA (2001) Biosynthesis of ascorbic acid in plants: a renaissance. Annu Rev Plant Physiol Plant Mol Biol 52:437–467

    Article  CAS  Google Scholar 

  • Tabata K, Ôba K, Suzuki K, Esaka M (2001) Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for L-galactono-1,4-lactone dehydrogenase. Plant J 27:139–148

    Article  CAS  Google Scholar 

  • Tokunaga T, Miyahara K, Tabata K, Esaka M (2005) Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for L-galactono-1,4-lactone dehydrogenase. Planta 220:854–863

    Article  CAS  Google Scholar 

  • Valpuesta V, Botella MA (2004) Biosynthesis of l-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci 9:573–577

    Article  CAS  Google Scholar 

  • Wei Q, Luo Q, Wang R, Zhang F, He Y, Zhang Y, Qiu D, Li K, Chang J, Yang G, He G (2017) A wheat R2R3-type MYB transcription factor TaODORANT1 positively regulates drought and salt stress responses in transgenic tobacco plants. Front Plant Sci 8:1374

    Article  Google Scholar 

  • Wang S, Shi M, Zhang Y, Pan Z, Xie X, Zhang L, Sun P, Feng H, Xue H, Fang C, Zhao J (2022) The R2R3-MYB transcription factor FaMYB63 participates in regulation of eugenol production in strawberry. Plant Physiol 188(4):2146–2165

    Article  CAS  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  CAS  Google Scholar 

  • Yabuta Y, Yoshimura K, Takeda T, Shigeoka S (2000) Molecular characterization of tobacco mitochondrial L-galactono-γ-lactone dehydrogenase and its expression in Escherichia coli. Plant Cell Physiol 41:666–675

    Article  CAS  Google Scholar 

  • Yang A, Dai X, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63(7):2541–2556

    Article  CAS  Google Scholar 

  • Yao PF, Li CL, Zhao XR, Li MF, Zhao HX, Guo JY, Cai Y, Chen H, Wu Q (2017) Overexpression of a Tartary buckwheat gene, FtbHLH3, enhances drought/oxidative stress tolerance in transgenic Arabidopsis. Front Plant Sci 8:625

    Article  Google Scholar 

  • Zhang Z, Wang J, Zhang R, Huang R (2012) The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J 71:273–287

    Article  CAS  Google Scholar 

  • Zhang J, Li B, Yang Y, Mu P, Qian W, Dong L, Zhang K, Liu X, Qin H, Ling H, Wang D (2016) A novel allele of L-galactono-1,4-lactone dehydrogenase is associated with enhanced drought tolerance through affecting stomatal aperture in common wheat. Sci Rep 6:30177

    Article  CAS  Google Scholar 

  • Zhang X, Chen L, Shi Q, Ren Z (2020) SlMYB102, an R2R3-type MYB gene, confers salt tolerance in transgenic tomato. Plant Sci 291:110356

    Article  CAS  Google Scholar 

  • Zhao Y, Yang Z, Ding Y, Liu L, Han X, Zhan J, Wei X, Diao Y, Qin W, Wang P, Liu P, Sajjad M, Zhang X, Ge X (2019) Over-expression of an R2R3 MYB Gene, GhMYB73, increases tolerance to salt stress in transgenic Arabidopsis. Plant Sci 286:28–36

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China (2018YFD1000200) and Anhui Provincial Natural Science Foundation (2108085MC105).

Author information

Authors and Affiliations

Authors

Contributions

XBX and CBF conceived and designed the experiments and wrote the paper. WWD, XW, LW, and JJL performed the experiments and analyzed the data. JZ and PPS participated in the preparation of the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Congbing Fang or Xingbin Xie.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 485 KB)

Supplementary file2 (XLSX 12 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dun, W., Wei, X., Wang, L. et al. Over-expression of FaGalLDH Increases Ascorbic Acid Concentrations and Enhances Salt Stress Tolerance in Arabidopsis thaliana. J. Plant Biol. 66, 35–46 (2023). https://doi.org/10.1007/s12374-022-09376-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-022-09376-z

Keywords

Navigation