Skip to main content
Log in

Coronatine Induces Stomatal Reopening by Inhibiting Hormone Signaling Pathways

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Coronatine (COR), a phytotoxin, aids Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) invasion by suppressing stomatal immunity, thus promoting bacterial replication. COR also promotes disease development, increases disease resistance in non-infected plant parts, suppresses cell wall defenses, and delays the hypersensitive response. Moreover, COR inhibits stomatal closure by influencing reactive oxygen species (ROS) synthesis, by NADPH oxidases RBOHD/F, which highlights the role of NADPH oxidases in guard cell signaling. Plant resistance to Pst DC3000 is dependent on guard cell-specific mitogen-activated protein kinases (MAPKs) that function downstream of ROS in salicylic acid (SA) and abscisic acid (ABA)-mediated stomatal closure. COR inhibits the ABA signal transduction pathway in guard cells, which is linked to pathogen-associated molecular pattern (PAMP)-induced stomatal closure. Furthermore, COR uses the plant jasmonate (JA) receptor coronatine-insensitive 1 (COI1) to activate multiple NAC transcription factors, which then regulate SA metabolic genes, preventing the accumulation of SA. In this review, we highlight the negative impact of COR on ROS production, SA and ABA signaling transduction, and consequently stomatal immunity. We believe that the inhibitory effects of COR on SA and ABA-induced stomatal closure require substantially more research to fully understand the stress adaptation mechanisms of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abulfaraj AA, Mariappan K, Bigeard J, Manickam P, Blilou I, Guo X, Al-Babili S, Pflieger D, Hirt H, Rayapuram N (2018) The Arabidopsis homolog of human G3BP1 is a key regulator of stomatal and apoplastic immunity. Life Sci Alliance 1(2):201800046

    Article  Google Scholar 

  • Arnaud D, Hwang I (2015) A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. Mol Plant Pathol 8(4):566–581

    CAS  Google Scholar 

  • Arnaud D, Lee S, Takebayashi Y, Choi D, Choi J, Sakakibara H, Hwang I (2017) Cytokinin-mediated regulation of reactive oxygen species homeostasis modulates stomatal immunity in Arabidopsis. Plant Cell 29(3):543–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assmann SM (2003) OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells. Trends Plant Sci 8(4):151–153

    Article  CAS  PubMed  Google Scholar 

  • Bertolino LT, Caine RS, Gray JE (2019) Impact of stomatal density and morphology on water-use efficiency in a changing world. Front Plant Sci 10:225

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao FY, Yoshioka K, Desveaux D (2011) The roles of ABA in plant–pathogen interactions. J Plant Res 124(4):489–499

    Article  CAS  PubMed  Google Scholar 

  • Chan C, Panzeri D, Okuma E, Tõldsepp K, Wang Y-Y, Louh G-Y, Chin T-C, Yeh Y-H, Yeh H-L, Yekondi S (2020) STRESS INDUCED FACTOR 2 regulates Arabidopsis stomatal immunity through phosphorylation of the anion channel SLAC1. Plant Cell 32(7):2216–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Balmant KM, Lawrence SR, Duong BV, Zhu F, Zhu N, Nicklay JJ (2020a) Redox proteomics of stomatal immunity reveals role of a lipid transfer protein in plant defense. bioRxiv 242

  • Chen S, Jia H, Wang X, Shi C, Wang X, Ma P, Wang J, Ren M, Li J (2020b) Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2 6 in guard cells. Mol Plant 13(5):732–744

    Article  CAS  PubMed  Google Scholar 

  • Couto D, Niebergall R, Liang X, Bücherl CA, Sklenar J, Macho AP, Ntoukakis V, Derbyshire P, Altenbach D, Maclean D (2016) The Arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1. PLoS Pathog 12(8):e1005811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cuppels DA (1986) Generation and characterization of Tn5 insertion mutations in Pseudomonas syringae pv. tomato. Appl Environ Microbiol 51(2):323–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deger AG, Scherzer S, Nuhkat M, Kedzierska J, Kollist H, Brosché M, Unyayar S, Boudsocq M, Hedrich R, Roelfsema MRG (2015) Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure. New Phytol 208(1):162–173

    Article  CAS  Google Scholar 

  • Desclos-Theveniau M, Arnaud D, Huang T-Y, Lin GJ-C, Chen W-Y, Lin Y-C, Zimmerli L (2012) The Arabidopsis lectin receptor kinase LecRK-V. 5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. PLoS Pathog 8(2):e1002513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du M, Zhai Q, Deng L, Li S, Li H, Yan L, Huang Z, Wang B, Jiang H, Huang T (2014) Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. Plant Cell 26(7):3167–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felipin-Azevedo R, Oblessuc P, Gonçalves-Vidigal M, Melotto M (2017) The common bean COK-4 and the Arabidopsis FER kinase domain share similar functions in plant growth and defence. Mol Plant Pathol 7:1765–1778

    Google Scholar 

  • Frechilla S, Talbott LD, Bogomolni RA, Zeiger E (2000) Reversal of blue light-stimulated stomatal opening by green light. Plant Cell Physiol 41(2):171–176

    Article  CAS  PubMed  Google Scholar 

  • Gimenez-Ibanez S, Chini A, Solano R (2016) How microbes twist jasmonate signaling around their little fingers. Plants 5(1):9

    Article  PubMed Central  CAS  Google Scholar 

  • Gudesblat GE, Iusem ND, Morris PC (2007) Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytol 173(4):713–721

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Nandi AK (2020) Long-chain base kinase1 promotes salicylic acid-mediated stomatal immunity in Arabidopsis thaliana. J Plant Biochem Biotechnol 29(4):796–803

    Article  CAS  Google Scholar 

  • Gupta P, Roy S, Nandi AK (2020) MEDEA-interacting protein LONG-CHAIN BASE KINASE 1 promotes pattern-triggered immunity in Arabidopsis thaliana. Plant Mol Biol 103(1):173–184

    Article  CAS  PubMed  Google Scholar 

  • Guzman AR, Kim J-G, Taylor KW, Lanver D, Mudgett MB (2020) Tomato atypical receptor kinase1 is involved in the regulation of preinvasion defense. Plant Physiol 183(3):1306–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Liang YK (2018) Stomata. eLS: 1–8

  • He J, Zhang RX, Peng K, Tagliavia C, Li S, Xue S, Liu A, Hu H, Zhang J, Hubbard KE (2018) The BIG protein distinguishes the process of CO2-induced stomatal closure from the inhibition of stomatal opening by CO2. New Phytol 218(1):232–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Zhang R-X, Kim DS, Sun P, Liu H, Liu Z, Hetherington AM, Liang Y-K (2020) ROS of distinct sources and salicylic acid separate elevated CO2-mediated stomatal movements in Arabidopsis. Front Plant Sci 11:542

    Article  PubMed  PubMed Central  Google Scholar 

  • Hettenhausen C, Baldwin IT, Wu J (2012) Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv. tomato DC3000. Plant Physiol 158(2):759–776

    Article  CAS  PubMed  Google Scholar 

  • Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z (2012) A plasma membrane receptor kinase, GHR1, mediates abscisic acid-and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24(6):2546–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA 106(48):20520–20525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jammes F, Yang X, Xiao S, Kwak JM (2011) Two Arabidopsis guard cell-preferential MAPK genes, MPK9 and MPK12, function in biotic stress response. Plant Signal Behav 6(11):1875–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, Ntoukakis V, Jones JD, Shirasu K, Menke F, Jones A (2014) Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol Cell 54(1):43–55

    Article  CAS  PubMed  Google Scholar 

  • Khokon MAR, Okuma E, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ 34(3):434–443

    Article  CAS  PubMed  Google Scholar 

  • Kim T-H, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostaki K-I, Coupel-Ledru A, Bonnell VC, Gustavsson M, Sun P, Mclaughlin FJ, Fraser DP, McLachlan DH, Hetherington AM, Dodd AN (2020) Guard cells integrate light and temperature signals to control stomatal aperture. Plant Physiol 182(3):1404–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Boddle S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22(11):2623–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JS (2010) Stomatal opening mechanism of CAM plants. J Plant Biol 53(1):19–23

    Article  CAS  Google Scholar 

  • Lee S, Ishiga Y, Clermont K, Mysore KS (2013) Coronatine inhibits stomatal closure and delays hypersensitive response cell death induced by nonhost bacterial pathogens. PeerJ 1:e34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee DS, Kim YC, Kwon SJ, Ryu C-M, Park OK (2017) The Arabidopsis cysteine-rich receptor-like kinase CRK36 regulates immunity through interaction with the cytoplasmic kinase BIK1. Front Plant Sci 8:1856

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Wang X-Q, Watson MB, Assmann SM (2000) Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287(5451):300–303

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16(1):126–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Li M, Yu L, Zhou Z, Liang X, Liu Z, Cai G, Gao L, Zhang X, Wang Y (2014) The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15(3):329–338

    Article  CAS  PubMed  Google Scholar 

  • Lim CW, Luan S, Lee SC (2014) A prominent role for RCAR3-mediated ABA signaling in response to Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis. Plant Cell Physiol 55(10):1691–1703

    Article  CAS  PubMed  Google Scholar 

  • Lim CW, Baek W, Jung J, Kim J-H, Lee SC (2015) Function of ABA in stomatal defense against biotic and drought stresses. Int J Mol Sci 16(7):15251–15270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Qi Z, Smigel A, Walker RK, Verma R, Berkowitz GA (2009) Ca2+, cAMP, and transduction of non-self perception during plant immune responses. Proc Natl Acad Sci USA 106(49):20995–21000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medeiros DB, Barros JA, Fernie AR, Araújo WL (2020) Eating away at ROS to regulate stomatal opening. Trends Plant Sci 25(3):220–223

    Article  CAS  PubMed  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126(5):969–980

    Article  CAS  PubMed  Google Scholar 

  • Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melotto M, Zhang L, Oblessuc PR, He SY (2017) Stomatal defense a decade later. Plant Physiol 174(2):561–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montillet J-L, Leonhardt N, Mondy S, Tranchimand S, Rumeau D, Boudsocq M, Garcia AV, Douki T, Bigeard J, Lauriere C (2013) An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol 11(3):e1001513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustilli A-C, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14(12):3089–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto M, Peterson FC, Defries A, Park S-Y, Endo A, Nambara E, Volkman BF, Cutler SR (2013) Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci USA 110(29):12132–12137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortigosa A, Gimenez-Ibanez S, Leonhardt N, Solano R (2019) Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnol J 17(3):665–673

    Article  CAS  PubMed  Google Scholar 

  • Pei Z-M, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406(6797):731–734

    Article  CAS  PubMed  Google Scholar 

  • Prodhan MY, Issak M, Nakamura T, Munemasa S, Nakamura Y, Murata Y (2017) Chitosan signaling in guard cells requires endogenous salicylic acid. Biosci Biotechnol Biochem 81(8):1536–1541

    Article  CAS  PubMed  Google Scholar 

  • Rea AC (2020) No entry: SIF2 closes stomatal “doors” to bacteria by making guard cells SLAC (1). Plant Cell 32(7):2069–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roelfsema MRG, Hedrich R (2005) In the light of stomatal opening: new insights into ‘the Watergate.’ New Phytol 167(3):665–691

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Deguchi M, Brustolini OJ, Santos AA, Silva FF, Fontes EP (2012) The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense. BMC Plant Biol 12(1):1–18

    Article  CAS  Google Scholar 

  • Sarwat M, Tuteja N (2017) Hormonal signaling to control stomatal movement during drought stress. Plant Gene 11:143–153

    Article  CAS  Google Scholar 

  • Saucedo-García M, Gavilanes-Ruíz M, Arce-Cervantes O (2015) Long-chain bases, phosphatidic acid, MAPKs, and reactive oxygen species as nodal signal transducers in stress responses in Arabidopsis. Front Plant Sci 6:55

    PubMed  PubMed Central  Google Scholar 

  • Sawinski K, Mersmann S, Robatzek S, Böhmer M (2013) Guarding the green: pathways to stomatal immunity. Mol Plant Microbe Interact 26(6):626–632

    Article  CAS  PubMed  Google Scholar 

  • Sirichandra C, Gu D, Hu HC, Davanture M, Lee S, Djaoui M, Valot B, Zivy M, Leung J, Merlot S, Kwak JM (2009) Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 proteinkinase. FEBS Lett 583(18):2982–2986

    Article  CAS  PubMed  Google Scholar 

  • Su J, Zhang M, Zhang L, Sun T, Liu Y, Lukowitz W, Xu J, Zhang S (2017) Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell 29(3):526–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toum L, Torres PS, Gallego SM, Benavídes MP, Vojnov AA, Gudesblat GE (2016) Coronatine inhibits stomatal closure through guard cell-specific inhibition of NADPH oxidase-dependent ROS production. Front Plant Sci 7:1851

    Article  PubMed  PubMed Central  Google Scholar 

  • Watkins JM, Chapman JM, Muday GK (2017) Abscisic acid-induced reactive oxygen species are modulated by flavonols to control stomata aperture. Plant Physiol 175(4):1807–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Qiao Z, Liu H, Acharya BR, Li C, Zhang W (2017) CML20, an Arabidopsis calmodulin-like protein, negatively regulates guard cell ABA signaling and drought stress tolerance. Front Plant Sci 8:824

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan X, Wang H, Cai J, Li D, Song F (2019) NAC transcription factors in plant immunity. Phytopathol Res 1(1):1–13

    Article  Google Scholar 

  • Yuchen M, Chunpeng S, Facai D, Xuechen W (2000) ABA-induced hydrogen peroxide generation in guard cells of Vicia faba. Zhiwu Shengli Xuebao (china) 1:53–58

    Google Scholar 

  • Zeng W, He SY (2010) A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. Plant Physiol 153(3):1188–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng W, Brutus A, Kremer JM, Withers JC, Gao X, Jones AD, He SY (2011) A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000. PLoS Pathog 7(10):e1002291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X-Y, Spivey NW, Zeng W, Liu P-P, Fu ZQ, Klessig DF, He SY, Dong X (2012) Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11(6):587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X-Y, Zhou M, Yoo H, Pruneda-Paz JL, Spivey NW, Kay SA, Dong X (2015) Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid. Proc Natl Acad Sci USA 112(30):9166–9173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Rural Development Administration, Republic of Korea (PJ0159992022 to M.G K.) and by National Research Foundation of Korea (NRF) grants funded by the Korean Government (2020R1I1A2073610 to M.G.K.)

Author information

Authors and Affiliations

Authors

Contributions

SU, DB, J-YC, and GA, wrote the manuscript, with conceptual advice and supervision from W-YK, and MGK.

Corresponding author

Correspondence to Min Gab Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, S., Bae, D., Cha, JY. et al. Coronatine Induces Stomatal Reopening by Inhibiting Hormone Signaling Pathways. J. Plant Biol. 65, 403–411 (2022). https://doi.org/10.1007/s12374-022-09362-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-022-09362-5

Keywords

Navigation