Skip to main content

Advertisement

Log in

Understanding Heavy Metal Stress in a Rice Crop: Toxicity, Tolerance Mechanisms, and Amelioration Strategies

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Heavy metal (HMs) pollution is regarded as one of the major concerns for soil and water, causing varieties of toxic and stress effects on plants and ecosystems. It has become one of the important limiting factors to crop productivity and quality. Due to an ever-increasing population growth and food demands, this situation has further worsened. Rice, a leading staple food crop that feeds more than 50% populations of the world, is constantly affected by abiotic stressors including HMs. In most of the countries, a major source of HM intake by humans is the rice grain produced through the paddy soils contaminated with HMs such as As, Al, Cu, Cr, Cd, Pb, Hg, Mn, Se, and Zn. Thus, gradual agglomeration of HMs in rice grains and their subsequent transfer to the food chain is a major menace to agriculture and human health. In recent years, several studies examined the impact of HMs toxicity on rice at multiple levels: molecular, biochemical, physiological, cellular and tissue, and demonstrated a correlation between HMs toxicity and the decreasing trend in rice productivity. Therefore, it is necessary to understand the interaction of HMs with rice crop spanning from the cell to whole plant level and devise appropriate effective means to alleviate these stress responses. This review focuses on tracing the pathways involved in stress responses and stress tolerance mechanisms displayed by different varieties of rice. However, it is essential to uncover the mechanisms related to stress responses in rice for designing improved investigations to develop novel varieties with high attributes. Therefore, this communication summarizes various defense strategies induced against HM stress and includes the function of metabolites (metabolomics), trace elements (ionomics), transcription factors (transcriptomics), and various stress-inducible proteins (proteomics) including the role of plant hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arif N, Yadav V, Singh S, Singh S, Ahmad P, Mishra RK, Sharma S, Tripathi DK, Dubey NK, Chauhan DK (2016a) Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front Environ Sci 4:69

    Article  Google Scholar 

  • Arif N, Yadav V, Singh S, Kushwaha BK, Singh S, Tripathi DK, Vishwakarma K, Sharma S, Dubey NK, Chauhan DK (2016b) Assessment of antioxidant potential of plants in response to heavy metals. In Plant responses to xenobiotics 97–125. Springer, Singapore

    Chapter  Google Scholar 

  • Abedin MJ, Cotter-Howells J, Meharg AA (2002) Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil 240:311–319

    Article  CAS  Google Scholar 

  • Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxico Environ Saf 119:186–197

    Article  CAS  Google Scholar 

  • Agrawal GK, Jwa NS, Shibato J, Han O, Iwahashi H, Rakwal R (2003). Diverse environmental cues transiently regulate OsOPR1 of the “octadecanoid pathway” revealing its importance in rice defense/stress and development. Biochem Biophys Res Commun 310:1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Renaut J (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during. As Stress Proteomics 8:3561–3576

    Article  CAS  PubMed  Google Scholar 

  • Ahsan N, Lee DG, Kim KH, Alam I, Lee SH, Lee KW, Lee BH (2010) Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere 78:224–231

    Article  CAS  PubMed  Google Scholar 

  • Ahsan N, Lee SH, Lee DG, Lee H, Lee SW, Bahk JD, Lee BH (2007) Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. C R Biols 330:735–746

    Article  CAS  Google Scholar 

  • Asadi M, Saadatmand S, Khavari-Nejad RA, Ghasem-Nejad M, Fotokian MH (2002) Effect of Zinc (Zn) on some physiological characteristics of rice seedling. Ind J Fund Appl Life Sci 2:89–96

    Google Scholar 

  • Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma 252:99–413

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Batool R, Hameed M, Ashraf M, Ahmad MSA, Fatima S (2015) Physio-Anatomical Responses of Plants to Heavy Metals. In Phytoremediation for Green Energy. Springer Netherlands 79–96

    Google Scholar 

  • Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty D, Trivedi PK, Misra P, Tiwari M, Shri M, Shukla D, Tripathi RD (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702

    Article  CAS  PubMed  Google Scholar 

  • Chan WF, Li H, Wu FY, Wu SC, Wong MH (2013) Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. J Hazard Mater 262:1116–1122

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Chao YY, Kao CH (2012) The role of iron in stress response to cadmium in rice seedlings. Crop Environ Bio 8:175–183

    Google Scholar 

  • Chatterjee C, Dube BK, Sinha P, Srivastava P (2004) Detrimental effects of lead phytotoxicity on growth, yield, and metabolism of rice. Commun Soil Sci Plant Anal 35:255–265

    Article  CAS  Google Scholar 

  • Choppala G, Saifullah Bolan N, Bibi S, Iqbal M, Rengel Z, Ok YS (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Cr Rev Plant Sci 33:374–391

    Article  CAS  Google Scholar 

  • Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17:594–605

    Article  CAS  PubMed  Google Scholar 

  • Choudhury B, Chowdhury S, Biswas AK (2011) Regulation of growth and metabolism in rice (Oryza sativa L.) by arsenic and its possible reversal by phosphate. J Plant Interact 6:15–24

    Article  CAS  Google Scholar 

  • Chu Q, Watanabe T, Sha Z, Osaki M, Shinano T (2015) Interactions between Cs, Sr, and other nutrients and trace element accumulation in Amaranthus shoot in response to variety effect. J Agric Food Chem 63:2355–2363

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Plant Signal Behave 5:663–667

    Article  CAS  Google Scholar 

  • Deng D, Wu SC, Wu FY, Deng H, Wong MH (2010) Effects of root anatomy and Fe plaque on arsenic uptake by rice seedlings grown in solution culture. Environ Pollut 158:2589–2595

    Article  CAS  PubMed  Google Scholar 

  • Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2013) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35:1281–1289

    Article  CAS  Google Scholar 

  • Dong J, Mao WH, Zhang GP, Wu FB, Cai Y (2007) Root excretion and plant tolerance to cadmium toxicity-a review. Plant Soil Envirn 53:193

    Article  CAS  Google Scholar 

  • Doni F, Isahak A, Zain CRCM, Yusoff WMW (2014) Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express 4:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan GL, Hu Y, Liu WJ, Kneer R, Zhao FJ, Zhu YG (2011) Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environ Expe Botany 71:416–421

    CAS  Google Scholar 

  • Duan J, Cai W (2012) OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One 7:e45117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey RS, Pessarakli M (2002) Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. Handbook of Plant and Crop Physiology 605–625

  • Dubey S, Shri M, Misra P, Lakhwani D, Bag SK, Asif MH, Chakrabarty D (2014) Heavy metals induce oxidative stress and genome-wide modulation in transcriptome of rice root. Funct Integr Genomic 14:401–417

    Article  CAS  Google Scholar 

  • Eshagberi GO (2012) Toxic Effects of Heavy Metals on Crop Plants. Multidisciplinary J Empir Res 10

  • Fangmin C, Ningchun Z, Haiming X, Yi L, Wenfang Z, Zhiwei Z, Mingxue C (2006) Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China. Sci Total Environ 359:156–166

    Article  CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Ahmad I, Ahmad A (2014) Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plantarum 58:9–17

    Article  CAS  Google Scholar 

  • Feng X, Han L, Chao D, Liu Y, Zhang Y, Wang R, Huang B (2017) Ionomic and transcriptomic analysis provides new insight into the distribution and transport of cadmium and arsenic in rice. J Hazard 331:246–256

    Article  CAS  Google Scholar 

  • Fleck AT, Mattusch J, Schenk MK (2013) Silicon decreases the arsenic level in rice grain by limiting arsenite transport. J Plant Nutr Soil Sc 176:785–794

    CAS  Google Scholar 

  • Gao JP, Chao DY, Lin HX (2008) Toward understanding molecular mechanisms of abiotic stress responses in rice. Rice 1:36–51

    Article  Google Scholar 

  • Gao L, Chang J, Chen R, Li H, Lu H, Tao L, Xiong J (2016) Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice. Rice 9:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomes MP, Marques TCLLD, e Melo S, Nogueira MDOG, Castro EMD, Soares ÂM (2011) Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens. Sci Agric 68:566–573

    Article  CAS  Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo B, Liang YC, Zhu YG, Zhao FJ (2007) Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ Pollut 147:743–749

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Zhang J, Teng M, Wang LH (2009) Arsenic uptake is suppressed in a rice mutant defective in silicon uptake. J Plant Nutr Soil Sc 172:867–874

    Article  CAS  Google Scholar 

  • Gupta DK, Rai UN, Tripathi RD, Inouhe M (2002) Impacts of fly-ash on soil and plant responses. J Plant Res 115:401–409

    Article  CAS  PubMed  Google Scholar 

  • Haiyan WANG, Huang J, Qingfu YE, Dianxing WU, Ziyuan CHEN (2009) Modified accumulation of selected heavy metals in Bt transgenic rice. J Environ Sci 21:1607–1612

    Article  CAS  Google Scholar 

  • Hajduch M, Rakwal R, Agrawal GK, Yonekura M, Pretova A (2001) High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves: Drastic reductions/fragmentation of ribulose-1, 5-bisphosphate carboxylase/oxygenase and induction of stress-related proteins. Electrophoresis 22:2824–2831

    Article  CAS  PubMed  Google Scholar 

  • He J, Ren Y, Chen X, Chen H (2014) Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotox and Environ Safe 108:114–119

    Article  CAS  Google Scholar 

  • He J, Ren Y, Chen X, Chen H (2014) Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicol Environ Safe 108:114–119

    Article  CAS  Google Scholar 

  • Hsu YT, Kao CH (2007) Heat shock-mediated H O accumulation and protection against Cd toxicity in rice seedlings. Plant Soil 300:137–147

    Article  CAS  Google Scholar 

  • Hu P, Ouyang Y, Wu L, Shen L, Luo Y, Christie P (2015) Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar. Ecotox and Environ Safe 27:225–231

    CAS  Google Scholar 

  • Hu T, Zhu S, Tan L, Qi W, He S, Wang G (2016) Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.). Environ Exp Bot 123:68–77

    Article  CAS  Google Scholar 

  • Hu Y, Ge Y, Zhang C, Ju T, Cheng W (2009) Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment. Plant Growth Regul 59:51

    Article  CAS  Google Scholar 

  • Iqbal N, Masood A, Nazar R, Syeed S, Khan NA (2010) Photosynthesis, growth and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in cadmium tolerance. Agr Sci China 9:519–527

    Article  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Nakanishi H (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346

    Article  CAS  PubMed  Google Scholar 

  • Jallad KN (2015) Heavy metal exposure from ingesting rice and its related potential hazardous health risks to humans. Environ Sci Pollut Res 22:15449–15458

    Article  CAS  Google Scholar 

  • Jamil, H, Theng LP, Jusoh K, Razali AM, Ali FB, Ismail BS (2011) Speciation of heavy metals in paddy soils from selected areas in Kedah and Penang, Malaysia. Afr J Biotechnol 10:13505–13513

    CAS  Google Scholar 

  • Ji Y, Zhou, Y, Ma C, Feng Y, Hao Y, Rui Y, Xing B (2017) Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol Biochem 110:82–93

    Article  CAS  PubMed  Google Scholar 

  • Jin M, Liu X, Wu L, Liu M (2015) An improved assimilation method with stress factors incorporated in the WOFOST model for the efficient assessment of heavy metal stress levels in rice. Int J Appl Earth Obs 41:118–129

    Article  Google Scholar 

  • Jonak C, Ökrész L, Bögre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5:415–424

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa S, Sano S, Koshiba T, Ushimaru T (2000) Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: comparison with those during dark-induced senescence. Physiol Plantarum 109:211–216

    Article  CAS  Google Scholar 

  • Kao CH (2014) Cadmium Stress in Rice Plants: Influence of Essential Elements

  • Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Boil 59:1–6

    Article  CAS  Google Scholar 

  • Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M, Lee IJ (2014) Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa Low silicon genes, and endogenous phytohormones. BMC Plant Boil 14:13

    Article  CAS  Google Scholar 

  • Kim YK, Lee MY (2009) Proteomic analysis of differentially expressed proteins of rice in response to cadmium. J Korean Soc Appl Bi52:428–436

    Article  CAS  Google Scholar 

  • Komatsu S (2008) Research on the rice proteome: the contribution of proteomics technology in the creation of abiotic stress-tolerant plants. Rice 1:154–165

    Article  Google Scholar 

  • Kumar A, Dixit G, Singh AP, Dwivedi S, Srivastava S, Mishra K, Tripathi RD (2016) Selenate mitigates arsenite toxicity in rice (Oryza sativa L.) by reducing arsenic uptake and ameliorates amino acid content and thiol metabolism. Ecotox Environ Safe 133:350–359

    Article  CAS  Google Scholar 

  • Kumar A, Dixit G, Singh AP, Dwivedi S, Srivastava S, Mishra K, Tripathi RD (2016) Selenate mitigates arsenite toxicity in rice (Oryza sativa L.) by reducing arsenic uptake and ameliorates amino acid content and thiol metabolism. Ecotox Environ Safe 133:350–359

    Article  CAS  Google Scholar 

  • Kumar A., Singh RP, Singh PK, Awasthi S, Chakrabarty D, Trivedi PK, Tripathi RD (2014) Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice (Oryza sativa L.). Ecotoxicology 23:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Lang I, Wernitznig S (2011) Sequestration at the cell wall and plasma membrane facilitates zinc tolerance in the moss Pohlia drummondii. Environ Exp Bot 74:186–193

    Article  CAS  Google Scholar 

  • Lee HJ, Abdula SE, Jang DW, Park SH, Yoon UH, Jung YJ, Cho YG (2013) Overexpression of the glutamine synthetase gene modulates oxidative stress response in rice after exposure to cadmium stress. Plant Cell Rep 32:1521–1529

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Chung WS (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol1 67:161–168

    Article  CAS  Google Scholar 

  • Lemos Batista B, Nigar M, Mestrot A, Alves Rocha B, Barbosa Junior F, Price AH, Feldmann J (2014) Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. J Exp Bot 65:1467–1479

    Article  CAS  PubMed Central  Google Scholar 

  • Li B, Quan-Wang C, Liu H, Li HX, Yang J, Song WP, Zeng M (2014) Effects of Cd2+ ions on root anatomical structure of four rice genotypes. J Env Biol 35:751

    CAS  Google Scholar 

  • Li H, Luo N, Zhang LJ, Zhao HM, Li YW, Cai QY, Mo CH (2016) Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice?. Total Environ 571:1183–1190

    Article  CAS  Google Scholar 

  • Li N, Wang J, Song WY (2015) Arsenic uptake and translocation in plants. Plant Cell Physiol 57:4–13

    Article  CAS  PubMed  Google Scholar 

  • Li X, Bu N, Li Y, Ma L, Xin S, Zhang L (2012) Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions. J Hazard Mater 213:55–61

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhao J, Li YF, Xu X, Zhang B, Liu Y, Chai Z (2016) Comparative metalloproteomic approaches for the investigation proteins involved in the toxicity of inorganic and organic forms of mercury in rice (Oryza sativa L.) roots. Metallomics 8:663–671

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Zhou M, Zhou X, Jin Y, Xu M, Lin J (2013) JcLEA, a novel LEA-like protein from Jatropha curcas, confers a high level of tolerance to dehydration and salinity in Arabidopsis thaliana. PLoS One 8:e83056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CC, Kao CH (2000) Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul 30:151–155

    Article  CAS  Google Scholar 

  • Lin CY, Trinh NN, Fu SF, Hsiung YC, Chia LC, Lin CW, Huang HJ (2013) Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol Boil 81:507–522

    Article  CAS  Google Scholar 

  • Liu CH, Huang WD, Kao CH (2012) The decline in potassium concentration is associated with cadmium toxicity of rice seedlings. Acta Physiol Plant 34:495–502

    Article  CAS  Google Scholar 

  • Liu J, Leng X, Wang M, Zhu Z, Dai Q (2011) Iron plaque formation on roots of different rice cultivars and the relation with lead uptake. Ecotoxicol Environ Saf 74:1304–1309

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ma J, He C, Li X, Zhang W, Xu F, Wang L (2013) Inhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall-bound form of silicon. New Phytol 200:691–699

    Article  CAS  PubMed  Google Scholar 

  • Liu WJ, Wood BA, Raab A, McGrath SP, Zhao FJ, Feldmann J (2010) Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. Plant Physiol 152:2211–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  PubMed  Google Scholar 

  • Lyubenova L, Pongrac P, Vogel-Mikuš K, Mezek GK, Vavpetič P, Grlj N, Schröder P (2013) The fate of arsenic, cadmium and lead in Typha latifolia: a case study on the applicability of micro-PIXE in plant ionomics. J Hazard Mater 248:371–378

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Cai H, He C, Zhang W, Wang L (2015) A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytolt 206:1063–1074

    Article  CAS  Google Scholar 

  • Ma J, Lv C, Xu M, Chen G, Lv C, Gao Z (2016a) Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress. Environ Sci Pollut R 23:1768–1778

    Article  CAS  Google Scholar 

  • Ma J, Sheng H, Li X, Wang L (2016b) iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells. Plant Physiol Biochem 104:71–80

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari R, Dubey RS (2007) Nickel toxicity inhibits ribonuclease and protease activities in rice seedlings: protective effects of proline. Plant Growth Regul 51:231–243

    Article  CAS  Google Scholar 

  • Mahmood T, Islam KR, Muhammad S (2007) Toxic effects of heavy metals on early growth and tolerance of cereal crops. Pak J Bot 39:451

    Google Scholar 

  • Makino A (2011) Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol 155:125–129

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto S, Kasuga J, Makino T, Arao T (2016) Evaluation of the effects of application of iron materials on the accumulation and speciation of arsenic in rice grain grown on uncontaminated soil with relatively high levels of arsenic. Environ Exper Bot 125:42–51

    Article  CAS  Google Scholar 

  • Meharg C, Meharg AA (2015) Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice?. Environ Exp Bot 120:8–17

    Article  CAS  Google Scholar 

  • Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248:565–577

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Moons A (2003a) Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal-and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Letters 553:427–432

    Article  CAS  PubMed  Google Scholar 

  • Moons A (2003b) Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots 1. FEBS Letters 553:370–376

    Article  CAS  PubMed  Google Scholar 

  • Msilini N, Zaghdoudi M, Govindachary S, Lachaâl M, Ouerghi Z, Carpentier R (2011) Inhibition of photosynthetic oxygen evolution and electron transfer from the quinone acceptor QA− to QB by iron deficiency. Photosynth Res 107:247–256

    Article  CAS  PubMed  Google Scholar 

  • Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008) Ricearsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59:2267–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nwugo CC, Huerta AJ (2010) The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. J Proteome Res 10:518–528

    Article  CAS  PubMed  Google Scholar 

  • Ou X, Zhang Y, Xu C, Lin X, Zang Q, Zhuang T, Liu B (2012) Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PloS One 7:e41143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda P, Nath S, Chanu TT, Sharma GD, Panda SK (2011) Cadmium stress-induced oxidative stress and role of nitric oxide in rice (Oryza sativa L.). Acta Physiol Plant 33:1737–1747

    Article  CAS  Google Scholar 

  • Pandey C, Gupta M (2015) Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J Hazard Mat 287:384–391

    Article  CAS  Google Scholar 

  • Pant PP, Tripathi AK (2014) Impact of Heavy Metals on Morphological And Biochemical Parameters of Shorea Robusta Plant. Ekol 33:116–126

    Article  Google Scholar 

  • Parmar P, Kumari N, Sharma V (2013) Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Botanical Studies 54:1

    Article  Google Scholar 

  • Peres da Rocha Oliveiros Marciano D, Toledo Ramos F, Neiva Alvim M, Ronaldo Magalhaes J, Giovanni Costa, França M (2010) Nitric oxide reduces the stress effects of aluminum on the process of germination and early root growth of rice. J Plant Nutr Soil Sci 173:885–891

    Article  CAS  Google Scholar 

  • Pinto SDS, Souza AED, Oliva MA, Pereira EG (2016) Oxidative damage and photosynthetic impairment in tropical rice cultivars upon exposure to excess iron. Sci Agric 73:217–226

    Article  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-Żylkiewicz B (2012) Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris(Chlorophyceae). Plant Physiol Biochem 52:52–65

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM, Islam MN, Miah MM, Tasmen A (2007) Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere 67:1072–1079

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2016) Impact of heavy metals on physiological processes of plants: with special reference to photosynthetic system. In Plant Responses to Xenobiotics. Springer, Singapore 127–140

    Chapter  Google Scholar 

  • Rebouillat J, Dievart A, Verdeil JL, Escoute J, Giese G, Breitler JC, Périn C (2008) Molecular genetics of rice root development. Rice 2:15–34

    Article  Google Scholar 

  • Ren JH, Sun HJ, Wang SF, Luo J, Ma LQ (2014) Interactive effects of mercury and arsenic on their uptake, speciation and toxicity in rice seedling. Chemosphere 117:737–744

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F, Ok YS (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut R 1–21

  • Roychoudhury A, Basu S, Sengupta DN (2012) Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol Plant 34:835–847

    Article  CAS  Google Scholar 

  • Rucińska-Sobkowiak R (2016) Water relations in plants subjected to heavy metal stresses. Acta Physiol Plant 38:257

    Article  CAS  Google Scholar 

  • Safarzadeh S, Ronaghi A, Karimian N (2013) Effect of cadmium toxicity on micronutrient concentration, uptake and partitioning in seven rice cultivars. Arch Acker Pfl Boden 59:231–245

    CAS  Google Scholar 

  • Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Yamaji N, Ma JF (2014) Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot 65:6013–6021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwab AP, He Y, Banks MK (2005) The influence of organic ligands on the retention of lead in soil. Chemosphere 61:856–866

    Article  CAS  PubMed  Google Scholar 

  • Sebastian A, Prasad MNV (2015) Trace element management in rice. Agronomy 5:374–404

    Article  CAS  Google Scholar 

  • Seneviratne M, Rajakaruna N, Rizwan M, Madawala HMSP, Ok YS, Vithanage M (2017) Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review. Environ Geochem Health 1–19

  • Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PM (2016) Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System Sharma I (2012) Arsenic induced oxidative stress in plants. Biologia 67:447–453

    Google Scholar 

  • Sharma P, Dubey RS (2005) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol 162:854–864

    Article  CAS  PubMed  Google Scholar 

  • Sharma RK, Agrawal M (2005) Biological effects of heavy metals: an overview. J Environ Biol 26:301–313

    CAS  PubMed  Google Scholar 

  • Sharma SK, Goloubinoff P, Christen P (2008) Heavy metal ions are potent inhibitors of protein folding. Biochem Bioph Res Co 372:341–345

    Article  CAS  Google Scholar 

  • Sharma SK, Goloubinoff P, Christen P (2011) Non-native Proteins as Newly-Identified Targets of Heavy Metals and Metalloids. In Cellular Effects of Heavy Metals. Springer Netherlands 263–274

    Chapter  Google Scholar 

  • Shi X, Zhang C, Wang H, Zhang F, (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53–60

    Article  CAS  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Tuli R (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110

    Article  CAS  PubMed  Google Scholar 

  • Shu R, Wang Y, Zhong H (2016) Biochar amendment reduced methylmercury accumulation in rice plants. J Hazard Mater 313:1–8

    Article  CAS  PubMed  Google Scholar 

  • Silva MLDS, Vitti GC, Trevizam AR (2014) Heavy metal toxicity in rice and soybean plants cultivated in contaminated soil. Revista Ceres 61:248–254

    Article  CAS  Google Scholar 

  • Singh P, Shah K (2014) Evidences for reduced metal-uptake and membrane injury upon application of nitric oxide donor in cadmium stressed rice seedlings. Plant Physiol Biochem 83:180–184

    Article  CAS  PubMed  Google Scholar 

  • Singh VP, Tripathi DK, Kumar D, Chauhan DK (2011) Influence of exogenous silicon addition on aluminium tolerance in rice seedlings. Biol Trace Elem Res 144:1260–1274

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Jwa NS (2013) Understanding the responses of rice to environmental stress using proteomics. J Proteome Res 12:4652–4669

    Article  CAS  PubMed  Google Scholar 

  • Slamet-Loedin IH, Johnson-Beebout SE, Impa S, Tsakirpaloglou N 2015 Enriching rice with Zn and Fe while minimizing Cd risk. Front Plant Sci 6:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava RK, Pandey P, Rajpoot R, Rani A, Dubey RS (2014) Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma 251:1047–1065

    Article  CAS  PubMed  Google Scholar 

  • Sytar O, Kumar A, Latowski, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    Article  CAS  Google Scholar 

  • Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK (2012) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35:1948–1957

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Dang F, Evans D, Zhong H, Xiao L (2017) Understanding reduced inorganic mercury accumulation in rice following selenium application: Selenium application routes, speciation and doses. Chemosphere 169:369–376

    Article  CAS  PubMed  Google Scholar 

  • Tena G, Asai T, Chiu WL, Sheen J (2001) Plant mitogen-activated protein kinase signaling cascades. Curr Opin Plant Biol 4:392–400

    Article  CAS  PubMed  Google Scholar 

  • Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Rey J (2016) Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Scientific Reports 6:19792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012a) Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiol Plant 34:279–289

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012b) Rice seedlings under cadmium stress: effect of silicon on growth, cadmium uptake, oxidative stress, antioxidant capacity and root and leaf structures. Chem Ecol 28:281–291

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh VP, Chauhan DK, Prasad SM, Dubey NK (2014) Role of macronutrients in plant growth and acclimation: recent advances and future prospective. In Improvement of Crops in the Era of Climatic Changes 197–216. Springer, New York, NY

    Google Scholar 

  • Tseng TS, Tzeng SS, Yeh KW, Yeh CH, Chang FC, Chen YM, Lin CY (1993) The heat-shock response in rice seedlings: isolation and expression of cDNAs that encode class I low-molecular-weight heat-shock proteins. Plant Cell Physiol 341:65–168

    Google Scholar 

  • Ueno D, Koyama E, Kono I, Ando T, Yano M, Ma JF (2009) Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant Cell Physiol 50:2223–2233

    Article  CAS  PubMed  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Inoue H (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay AK, Singh NK, Singh R, Rai UN (2016) Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Ecotoxicol. Environ Saf 124:68–73

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Dubey RS, (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Wada Y, Miyamoto K, Kusano T, Sano H (2004) Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genet Genomics 271:658–666

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Fang Z, Cheng W, Yan X, Tsang PE, Zhao D (2016) Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environ Pollut 210:338–345

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Tam NFY, Fu S, Ametkhan A, Ouyang Y, Ye Z (2014) Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa). Ann Bot 114:271–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Yao H, Wong MH, Ye Z (2013) Dynamic changes in radial oxygen loss and iron plaque formation and their effects on Cd and As accumulation in rice (Oryza sativa L.). Environ Geochem Hlth 35:779–788

    Article  CAS  Google Scholar 

  • Wang Y, Jiang X, Li K, Wu M, Zhang R, Zhang L, Chen G (2014) Photosynthetic responses of Oryza sativa L. seedlings to cadmium stress: physiological, biochemical and ultrastructural analyses. Biometals 27:389–401

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Li GZ, Gong QQ, Li GX, Zheng SJ (2015) OsTCTP, encoding a translationally controlled tumor protein, plays an important role in mercury tolerance in rice. BMC Plant Boil 15:123

    Article  CAS  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal 4:162–176

    Article  Google Scholar 

  • Wu C, Zou Q, Xue S, Mo J, Pan W, Lou L, Wong MH (2015) Effects of silicon (Si) on arsenic (As) accumulation and speciation in rice (Oryza sativa L.) genotypes with different radial oxygen loss (ROL). Chemosphere 138:447–453

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Cheng S (2014) Root genetic research, an opportunity and challenge to rice improvement. Field Crop Res 165:111–124

    Article  Google Scholar 

  • Wu Z, Zhang C, Yan J, Yue Q, Ge Y (2015) Effects of sulfur supply and hydrogen peroxide pretreatment on the responses by rice under cadmium stress. Plant Growth Regul 77:299–306

    Article  CAS  Google Scholar 

  • Wysocki R, Tamás MJ (2010) How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 34:925–951

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yang L, Wang Y, Wang Z (2005) Advances in the study uptake and accumulation of heavy metal in rice ({\sl Oryza sativa}) and its mechanisms. Chinese Bulletin of Botany 22:614–622

    Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yadavalli V, Neelam S, Rao AS, Reddy AR, Subramanyam R (2012) Differential degradation of photosystem I subunits under iron deficiency in rice. J Plant Physiol 169:753–759

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Ji J, Harris-Shultz KR, Wang H, Wang H, Abd-Allah EF, Hu X (2016) The dynamic changes of the plasma membrane proteins and the protective roles of nitric oxide in rice subjected to heavy metal cadmium stress. Front Plant Sci 7:190

    PubMed  PubMed Central  Google Scholar 

  • Yang YY, Jung JY, Song WY, Suh HS, Lee Y (2000) Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol 124:1019–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh CM, Chien PS, Huang HJ (2007) Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 58:659–671

    Article  CAS  PubMed  Google Scholar 

  • Yin B, Zhou L, Yin B, Chen L (2016) Effects of organic amendments on rice (Oryza sativa L.) growth and uptake of heavy metals in contaminated soil. J Soil Sediment 16:537–546

    Article  CAS  Google Scholar 

  • Yu C, Sun C, Shen C, Wang S, Liu F, Liu Y, Geisler M (2015) The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). Plant J 83:818–830

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Qiu W, Wang F, Lei M, Wang D, Song Z (2017) Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Chemosphere 168:341–349

    Article  CAS  PubMed  Google Scholar 

  • Yadav V, Arif N, Singh S, Srivastava PK, Sharma S, Tripathi DK, Dubey N, Chauhan DK (2016) Exogenous mineral regulation under heavy metal stress: advances and prospects. Biochem Pharmacol 5:2167–0501

    Article  CAS  Google Scholar 

  • Zeng LS, Liao M, Chen C, Huang CY (2007) Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil–lead–rice (Oryza sativa L.) system. Ecotox Environ Safe 67:67–74

    Article  CAS  Google Scholar 

  • Zhang A, Bian R, Li L, Wang X, Zhao Y, Hussain Q, Pan G (2015) Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy. Environ Sci Pollut Res 22:18977–18986

    Article  CAS  Google Scholar 

  • Zhang L, Chen Z, Zhu C (2012) Endogenous nitric oxide mediates alleviation of cadmium toxicity induced by calcium in rice seedlings. J Environ Sci 24:940–948

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhao FY, Hu F, Zhang SY, Wang K, Zhang CR, Liu T (2013) MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice. Environ Sci Pollut 20:5449–5460

    Article  CAS  Google Scholar 

  • Zheng R, Chen Z, Cai C, Tie B, Liu X, Reid BJ, Baltrènaitè E (2015) Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment-a field experiment in Hunan, China. Environ Sci Pollut R 22:11097–11108

    Article  CAS  Google Scholar 

  • Zheng RL, Cai C, Liang JH, Huang Q, Chen Z, Huang YZ, Sun GX (2012) The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere 89:856–862

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Wu L, Li Z, Yang B, Yin B, Luo Y, Christie P (2015) Influence of rapeseed cake on heavy metal uptake by a subsequent rice crop after phytoextraction using sedum plumbizincicola. Int J Phytoremediat 17:76–84

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the University Grants Commission, New Delhi for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Durgesh Kumar Tripathi or Devendra Kumar Chauhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, N., Sharma, N.C., Yadav, V. et al. Understanding Heavy Metal Stress in a Rice Crop: Toxicity, Tolerance Mechanisms, and Amelioration Strategies. J. Plant Biol. 62, 239–253 (2019). https://doi.org/10.1007/s12374-019-0112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-019-0112-4

Keywords

Navigation