Skip to main content
Log in

Cadmium stress-induced oxidative stress and role of nitric oxide in rice (Oryza sativa L.)

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a potential environmental phytotoxicant. The generation of reactive oxygen species (ROS) due to Cd stress is responsible for the induction of oxidative stress in plants. On the other hand, SNP, a NO donor is known to have effect on Cd-induced oxidative stress in plants. We evaluated the effect of NO on the regulation of Cd stress in the rice (Oryza sativa L.) variety MSE-9. Cd treatment was given in the form of 50, 100 and 200 μM, whereas for interaction study, 100 μM of Cd and 100 μM of SNP were used. The result showed that Cd-induced oxidative stress in MSE-9 by generating ROS. However, when SNP was given with Cd stress, it was seen that SNP treatment regulated the stress metabolism in rice seedlings under Cd toxicity by generating NO. It can be said that the SNP in combination with Cd treatment might possess the way to protect rice seedlings under Cd stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Cd:

Cadmium

NO:

Nitric oxide

SNP:

Sodium nitroprusside

ROS:

Reactive oxygen species

APX:

Ascorbate peroxidase

CAT:

Catalase

GR:

Glutathione reductase

POX:

Guaiacol peroxidase

SOD:

Superoxide dismutase

DTNB:

Dithionitrobenzoic acid

h:

Hour

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

GSH:

Glutathione

ASC:

Ascorbate

References

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi:10.1146/annurev.arplant.50.1.601

    Article  PubMed  CAS  Google Scholar 

  • Balestrasse KB, Noriega GO, Batlle A, Tomaro ML (2006) Heme oxygenase activity and oxidative stress signaling in soybean leaves. Plant Sci 170:339–346

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208:337–344

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2001) Nitric oxide in plants: the history is just beginning. Plant Cell Environ 24:267–278

    Article  CAS  Google Scholar 

  • Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou JP, Pugin A, Wendehenne D (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149:1302–1315

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and peroxidases. Methods Enzymol 2:764–775

    Google Scholar 

  • Chamseddine M, Wided B, Guy A, Marie-Edith H, Fatma C (2008) Cadmium and copper induction of oxidative stress and antioxidative response in tomato (Solanum lycopersicon) leaves. Plant Growth Regul. doi:10.1007/s10725-008-9324-1

  • Cornu JY, Denaix L, Schneider A, Pellerin S (2008) Temporal variability of solution Cd2+ concentration in metal-contaminated soils as affected by soil temperature: consequences on lettuce (Lactuca sativa L.) exposure. Plant Soil 307:51–65. doi;10.1007/s11104-008-9580-x

    Google Scholar 

  • Cui X, Zhang Y, Chen X, Jin H, Wu X (2009) Effects of exogenous nitric oxide protects tomato plants under copper stress. Protoplasma. doi:10.1109/ICBBE.2009.5162740

  • Davenport SB, Gallego SM, Benavides MP, Tomaro ML (2003) Behaviour of antioxidant defense system in the adaptive response to salt stress in Helianthus annus L. cell. Plant Growth Regul 40:81–88. doi:10.1023/A:1023060211546

    Article  CAS  Google Scholar 

  • Davis DG, Swanson HR (2001) Activity of stress-related enzymes in the perennial weed leafy spurge (Euphorbia esula L.). Environ Exp Bot 46:95–108. doi:10.1016/S0098-8472(01)00081-8

    Google Scholar 

  • Finkemeier I, Kluge C, Metwally A, Georgi M, Grotjohann N, Dietz KJ (2003) Alterations in Cd-induced gene expression under nitrogen deficiency in Hordeum vulgare. Plant Cell Environ 26:821–833

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione-associated mechanism of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol 59:309–314

    Google Scholar 

  • Gould KS, Klinguer A, Pugin A, Wendehenne D (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ 26:1851–1862

    Article  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–221

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Foyer CH (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139:9–17

    Google Scholar 

  • Hernandez LE, Cooke DT (1997) Modifications of root plasma membrane lipid composition of cadmium treated Pisum sativum. J Exp Bot 48:1375–1381

    Article  CAS  Google Scholar 

  • Hill AC, Bennett JH (1970) Inhibition of apparent photosynthesis by nitrogen oxides. Atmos Environ 4:341–348

    Article  CAS  Google Scholar 

  • Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238

    Article  CAS  Google Scholar 

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ine’s J, Al-Juburi HJ, Chang-Xiang Z, Hong-Bo S, Panneerselvam R (2008) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant. doi:10.1007/s11738-009-0275-6

  • Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2008b) Exogenous application of triadimefon affects the antioxidant defense system of Withania somnifera Dunal. Pestic Biochem Physiol 91:170–174. doi:10.1016/j.pestbp.2008.03.006

    Article  CAS  Google Scholar 

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ine`s J, Al-Juburi HJ, Chang-Xing Z, Hong-Bo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant. doi:10.1007/s11738-009-0275-6

  • Jimenez A, Hernandez JA, del Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate–glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed  CAS  Google Scholar 

  • Khan NA, Singh S, Nazar R (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agron Crop Sci 193:433–442

    Article  Google Scholar 

  • Klepper LA (1979) Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmos Environ 13:537–541

    Article  CAS  Google Scholar 

  • Kumar P, Tewari RK, Sharma PN, (2008) Cadmium enhances generation of hydrogen peroxide and amplifies activities of catalase, peroxidases and superoxide dismutase in maize. J Agron Crop Sci. ISSN 0931-2250

  • Kuriakose Saritha V, Prasad MNV (2008) Cadmium stress affects seed germination and seedling growth in Sorghum bicolor (L.) Moench by changing the activities of hydrolyzing enzymes. Plant Growth Regul 54:143–156. doi:10.1007/s10725-007-9237-4

    Article  Google Scholar 

  • Lamattina L, Garcı′a-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  PubMed  CAS  Google Scholar 

  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    Article  CAS  Google Scholar 

  • Leshem YY, Kuiper PJC (1996) Is there a GAS (general adaptation syndrome) response to various types of environmental stress? Biol Plant 38:1–18

    Article  Google Scholar 

  • Leshem YY, Haramaty E, Iluz D, Malik Z, Sofer Y, Roitman L (1997) Effect of stress nitric oxide (NO): interaction between chlorophyll fluorescence, galactolipid fluidity and lipoxygenese activity. Plant Physiol Biochem 35:573–579

    CAS  Google Scholar 

  • Leshem YY, Wills RBH, Ku VVV (1998) Evidence for the function of the free radical gas-nitric oxide (NO)-as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–833

    Article  CAS  Google Scholar 

  • Linger P, Ostwald A, Haensler J (2005) Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. Biol Plant 49(4):567–576

    Article  CAS  Google Scholar 

  • Liu D, Kottke I (2005) Subcellular localization of Cd in the root cells of Allium sativum by electron energy loss spectroscopy. J Biosci 28(4):471–478

    Article  Google Scholar 

  • Liu HJ, Zhang JL, Christie P, Zhang FS (2007) Influence of external zinc and phosphorus supply on Cd uptake by rice (Oryza sativa L.) seedlings with root surface iron plaque. Plant Soil 300:105–115. doi:10.1007/s11104-007-9393-3

    Google Scholar 

  • Luan ZQ, Cao HC, Yan BX (2008) Individual and combined phytotoxic effects of cadmium, lead and arsenic on soybean in Phaeozem. Plant Soil Environ 54(9):403–411

    CAS  Google Scholar 

  • Maehly A, Chance B (1954) The assay of catalases and peroxidases. Methods Biochem Anal 357

  • Mehlhorn H, Lelandais M, Korth HG, Foyer CH (1996) Ascorbate is the natural substrate for plant peroxidases. FEBS Lett 378:203–206. doi:10.1016/0014-5793(95)01448-9

    Article  PubMed  CAS  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Molina AS, Nievas C, Chaca MVP, Garibotto F, González U, Marsá SM, Luna C, Giménez MS, Zirulnik F (2008) Cadmium-induced oxidative damage and antioxidative defense mechanisms in Vigna mungo L. Plant Growth Regul. doi:10.1007/s10725-008-9308-1

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2002) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Leonardo G, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J Exp Bot 53(372):1283–1304. doi:10.1093/jexbot/53.372.1283

    Article  PubMed  CAS  Google Scholar 

  • Orozco-Cardenas ML, Ryan CA (2002) Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol 130:487–493

    Article  PubMed  CAS  Google Scholar 

  • Oser B, Hawks L (1985) Physiological chemistry. McGraw Hill, New York, pp 702–705

    Google Scholar 

  • Patel MJ, Patel JN, Subramanian RB (2005) Effect of cadmium on growth and the activity of H2O2 scavenging enzymes in Colocassia esculentum. Plant Soil 273:183–188

    Article  CAS  Google Scholar 

  • Pedroso MC, Magalhaes JR, Durzan D (2000) Nitric oxide induces cell death in Taxus cells. Plant Sci 157:173–180

    Article  PubMed  CAS  Google Scholar 

  • Pinto AP, Mota AM, de Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by Sorghum plants. Sci Total Environ 326:239–247

    Article  PubMed  CAS  Google Scholar 

  • Qiao W, Fan LM (2008) Nitric oxide signaling in plant responses to abiotic stresses. J Int Plant Biol 50(10):1238–1246

    Article  CAS  Google Scholar 

  • Rodrı′guez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Rı′o LA, Sandalio L (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Article  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Diana M, Testillano PS, Risueño MC, del Río L, Sandalio A, Luisa M (2009) Cellular response of pea plants to cadmium toxicity: cross-talk between reactive oxygen species, nitric oxide and calcium. Plant Physiol Prev. doi:10.1104/pp.108.131524

  • Sagisaka S (1976) The occurence of peroxide in a perennial plant Populas gelrica. Plant Physiol 57:308–309

    Article  PubMed  CAS  Google Scholar 

  • Salin ML (1987) Toxic oxygen species and protective systems of the chloroplast. Physiol Plant 72:681–689

    Article  Google Scholar 

  • Sanita di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130. doi:10.1016/S0098-8472(98)00058-6

    Article  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Shamsii Ih, Wei K, Zhang GP, Jilani GH, Hassan MJ (2008) Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. Biol Plant 52(1):165–169

    Article  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53(372):1305–1319. doi:10.1093/jexbot/53.372.1305

    Article  PubMed  CAS  Google Scholar 

  • Shingles R, Roh MH, McCarty RE (1996) Nitrate transport in chloroplast inner envelope vesicles. Plant Physiol 112:1375–1381

    PubMed  CAS  Google Scholar 

  • Siddiqui S, Meghvansi MK, Wani MA, Jabee F (2009) Evaluating cadmium toxicity in the root meristem of Pisum sativum L. Acta Physiol Plant. doi:10.1007/s11738-008-0262-3

  • Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233–246

    Article  PubMed  CAS  Google Scholar 

  • Singh SP, Batish DR, Kaur G, Arora K, Kohli RK (2008) Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ Exp Bot 63:158–167

    Article  CAS  Google Scholar 

  • Smeets K, Ruytinx J, Semane B, Belleghemc FV, Remans T, Suzy Van Sanden, Jaco V, Cuypers A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63:1–8

    Google Scholar 

  • Vanacker H, Carver TLW, Foyer CH (1998) Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117:1103–1114. doi:10.1104/pp.117.3.1103

    Article  PubMed  CAS  Google Scholar 

  • Wang Zi, Zhang Y, Huang Z, Huang L (2008) Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant Soil 310:137–149. doi:10.1007/s11104-008-9641-1

    Article  CAS  Google Scholar 

  • Wellburn AR (1990) Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? New Phytol 115:395–429

    Article  CAS  Google Scholar 

  • Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defence responses. Curr Opin Plant Biol 7:449–455

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H (2000) Nitrite-dependent nitric oxide production pathway: implications for Philos. Trans R Soc Lond B Biol Sci 355:1477–1488

    Article  CAS  Google Scholar 

  • Zhang XZ (1992) The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. In: Zhang XZ (ed) Research methodology of crop physiology. Agriculture Press, Beijing, pp 208–211

  • Zhao CX, Guo LY, Jaleel CA, Hong-Bo S, Yang HB (2008) Prospects for dissecting plant-adaptive molecular mechanisms to improve wheat cultivars in drought environments. C R Biol 331:579–586. doi:10.1016/j.crvi.2008.05.006

    Article  PubMed  CAS  Google Scholar 

  • Zottini M, Formentin E, Scattolin M, Carimi F, LoSchiavo F, Terzi M (2002) Nitric Oxide affects plant mitochondrial functionality in vivo. FEBS Lett 515:75–78

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjib Kumar Panda.

Additional information

Communicated by G. Bartosz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panda, P., Nath, S., Chanu, T.T. et al. Cadmium stress-induced oxidative stress and role of nitric oxide in rice (Oryza sativa L.). Acta Physiol Plant 33, 1737–1747 (2011). https://doi.org/10.1007/s11738-011-0710-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0710-3

Keywords

Navigation