Skip to main content
Log in

Characterization of Cucurbita maxima Fruit Metabolomic Profiling and Transcriptome to Reveal Fruit Quality and Ripening Gene Expression Patterns

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Pumpkin (Cucurbita maxima) fruit is the important dietary source of carotenoid and is known for the good flavour and texture due to the accumulation of sugar and starch. However, lack of transcriptional information hinders our understanding of the molecular mechanisms underlying fruit quality attributes and nutrition in C. maxima. To provide insight into transcriptional regulation of fruit quality formation of C. maxima, quality analysis and high-throughput RNA sequencing of fruits at different developing stages were characterized. The quality analyses consist of dry matter values, percent soluble solids, carotenoid contents, and starch and sugar contents in seven stages of fruit development. Fruit transcriptome of C. maxima at five stages throughout development was assembled to elucidate the molecular regulation of fruit development. Almost 18 billion nucleotide bases were sequenced in total, and 48,471 unigenes were detected. A total of 32,397 (66.8%) unigenes were identified to be differentially expressed. We found there was a correlation between ripening-associated transcripts and metabolites and the functions of regulating genes. KEGG analysis showed there are multiple transcripts enriched in starch, sugar, carotenoid, plant hormone signal transduction and pectin pathways and several pathways regulating quality formation were identified. Candidate genes involving in sugar, starch, pectin, fruit softening and carotenoid metabolism in fruit were firstly identified for the species of C. maxima. Combining the sugar, starch and carotenoid accumulating patterns during fruit development, a series of possible rate limiting genes were identified. These findings will provide valuable information for further studies regarding fruit quality and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando K, Carr KM, Grumet R (2012a) Transcriptome analyses of early cucumber fruit growth identifies distinct gene modules associated with phases of development. BMC Genomics 13:518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ando K, Carr KM, Grumet R (2012b) Transcriptome analyses of early cucumber fruit growth identifies distinct gene modules associated with phases of development. BMC Genomics 13:518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arima HK, Rodriguez-Amaya DB (1988) Carotenoid composition and vitamin A value of commercial Brazilian squashes and pumpkins. J Micronutr Anal 4:177–191

    CAS  Google Scholar 

  • Arima HK, Rodriguez-Amaya DB (1990) Carotenoid composition and vitamin A value of a squash and a pumpkin from Northeastern Brazil. Arch Latinoam Nutr 40:284–292

    CAS  PubMed  Google Scholar 

  • Azevedo-Meleiro CH, Rodriguez-Amaya DB (2007) Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo. J Agric Food Chem 55:4027–4033

    Article  CAS  PubMed  Google Scholar 

  • Baker R, Gunther C (2004) The role of carotenoids in consumer choice and the likely benefits from their inclusion into products for human consumption. Trends Food Sci Tech 15:484–488

    Article  CAS  Google Scholar 

  • Blanca J, Canizares J, Roig C, Ziarsolo P, Nuez F, Pico B (2011) Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics 12:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanca J, Esteras C, Ziarsolo P, Pérez D, Ferna Ndez-Pedrosa V, Collado C, Rodrã Guez de Pablos R, Ballester A, Roig C, Canizares J, Picó B (2012) Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 13:280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvajal F, Rosales R, Palma F, Manzano S, Canizares J, Jamilena M, Garrido D (2018) Transcriptomic changes in Cucurbita pepo fruit after cold storage: differential response between two cultivars contrasting in chilling sensitivity. BMC Genomics 19:125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chávez-Servln JL, Castellote AI, López-Sabater MC (2004) Analysis of mono-and disaccharides in milk-based formulae by highperformance liquid chromatography with refractive index detection. J Chromatogr A 1043:211–215

    Article  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Esteras C, Gomez P, Monforte AJ, Blanca J, Vicente-Dolera N, Roig C, et al. (2012) High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics 13:80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu C, Shi H, Li Q (2006) A review on pharmacological activities and utilization technologies of pumpkin. Plant Food Hum Nutr 61: 70–77

    Article  CAS  Google Scholar 

  • Gapper NE, McQuinn RP, Giovannoni JJ (2013) Molecular and genetic regulation of fruit ripening. Plant Mol Biol 82:575–591

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grassi S, Piro G, Lee JM, Zheng Y, Fei Z, Dalessandro G, Giovannoni JJ, Lenucci MS (2013) Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit. BMC Genomics 14:781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Liu J, Zheng Y, Huang M, Zhang H, Gong G, He H, Ren Y, Zhong S, Fei Z, Xu Y (2011) Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. BMC Genomics 12:454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W-L, Chen B-H, Chen X-J, Guo Y-Y, Yang H-L, Li X-Z, Wang G-Y (2018) Transcriptome profiling of pumpkin (Cucurbita moschata Duch.) leaves infected with powdery mildew. PLoS One 13:e0190175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Li R Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EAG, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan, Wu Z, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim J-Y, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S (2009) The genome of the cucumber, Cucumis sativus L. Nature Genet 41:1275

    Article  CAS  PubMed  Google Scholar 

  • Kaźmińska K, Hallmann E, Rusaczonek A, Korzeniewska A, Sobczak M, Filipczak J Kuczerski KS, Steciuk J, Sitarek-Andrzejczyk M, Gajewski M (2018) Genetic mapping of ovary colour and quantitative trait loci for carotenoid content in the fruit of Cucurbita maxima Duchesne. Mol Breed 38:114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Montero-Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Martí-Gómez C, Ferriol M, Gómez P, Jamilena M, Mueller L, Picó B, Cañizares J (2017a) De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnol J. doi:https://doi.org/10.1111/pbi.12860

  • Montero-Pau J, Blanca J, Esteras C, Martinez-Perez EM, Gomez P, Monforte AJ, Cañizares J, Picó B (2017b) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using Genotyping-by-sequencing. BMC Genomics 18:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nakkanong K, Yang JH, Zhang MF (2012a) Carotenoid Accumulation and Carotenogenic Gene Expression during Fruit Development in Novel Interspecific Inbred Squash Lines and Their Parents. J Agric Food Chem 60:5936–5944

    Article  CAS  PubMed  Google Scholar 

  • Nakkanong K, Yang JH, Zhang MF (2012b) Starch accumulation and starch related genes expression in novel inter-specific inbred squash line and their parents during fruit development. Sci Hort 136:1–8

    Article  CAS  Google Scholar 

  • Obrero A, Gonzalez-Verdejo CI, Die JV, Gomez P, Del Rio-Celestino M, Roman B (2013) Carotenogenic gene expression and carotenoid accumulation in three varieties of Cucurbita pepo during fruit development. J Agric Food Chem 61:6393–6403

    Article  CAS  PubMed  Google Scholar 

  • Shin AY, Kim YM, Koo N, Lee SM, Nahm S, Kwon SY (2017) Transcriptome analysis of the oriental melon (Cucumis melo L. var. makuwa) during fruit development. Peer J 5:e2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smidt CR, Burke DS (2004) Nutritional significance and measurement of carotenoids. Curr Top Nutraceutical Res 2:79–91

    CAS  Google Scholar 

  • Stevenson DG, Yoo S-H, Hurst PL, Jane J-L (2005) Structural and physicochemical characteristics of winter squash (Cucurbita maxima D.) fruit starches at harvest. Carbohydr Polym 59:153–163

    Article  CAS  Google Scholar 

  • Sun H, Wu S, Zhang G, Jiao C, Guo S, Ren Y, Zhang J, Zhang H, Gong G, Jia Z, Zhang F, Tian J, Lucas WJ, Doyle JJ, Li H, Fei Z, Xu Y (2017) Karyotype Stability and Unbiased Fractionation in the Paleo-Allotetraploid Cucurbita Genomes. Mol Plant 10: 1293–1306

    Article  CAS  PubMed  Google Scholar 

  • Vendrell M, Palomer X (1998) Hormonal control of fruit ripening in climacteric fruits. Acta Hortic 463:325–33

    Article  Google Scholar 

  • Wang J, Li Y, Tian Y, Xu X, Ji X, Cao X, Jin Z (2010) A novel triplewavelength colorimetric method for measuring amylose and amylopectin contents. Starch-Starke 62:508–516

    Article  CAS  Google Scholar 

  • Wang P, Liu J, Zhao Q, Hao L (2001) Studies on nutrient composition and utilization of pumpkin fruit. J Inner Mongolia Agri Univ 23:52–54

    Google Scholar 

  • Wu J, Xu Z, Zhang Y, Chai L, Yi H, Deng X (2014a) An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. J Exp Bot 65:1651–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu T, Luo S, Wang R, Zhong Y, Xu X, Lin Ye, He X, Sun B, Huang H (2014b) The first Illumina-based de novo transcriptome sequencing and analysis of pumpkin (Cucurbita moschata Duch.) and SSR marker development. Mol Breed 34:1437–1447

    Article  CAS  Google Scholar 

  • Wyatt LE, Strickler SR, Mueller LA, Mazourek M (2015) An acorn squash (Cucurbita pepo ssp. ovifera) fruit and seed transcriptome as a resource for the study of fruit traits in Cucurbita. Hortic Res 2:14070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyatt LE, Strickler SR, Mueller LA, Mazourek M (2016) Comparative analysis of Cucurbita pepo metabolism throughout fruit development in acorn squash and oilseed pumpkin. Hortic Res 3:16045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xanthopoulou A, Ganopoulos I, Psomopoulos F, Manioudaki M, Moysiadis T, Kapazoglou A, Osathanunkul M, Michailidou S, Kalivas A, Tsaftaris A, Nianiou-Obeidat I, Madesis P (2017) De novo comparative transcriptome analysis of genes involved in fruit morphology of pumpkin cultivars with extreme size difference and development of EST-SSR markers. Gene 622:50–66

    Article  CAS  PubMed  Google Scholar 

  • Yadav M, Jain S, Tomar R, Prasad G, Yadav H (2010) Medicinal and biological potential of pumpkin: an updated review. Nutr Res Rev 23:184–190

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Research 34(suppl_2):W293–W297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Hu T, Yang C, Li H, Yang M, Ijaz R, Ye Z, Zhang Y (2015) Transcriptome profiling of tomato fruit development reveals transcription factors associated with ascorbic acid, carotenoid and flavonoid biosynthesis. PLoS One 10:e0130885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Jiang Z, Zhang E (2000) Pumpkin function properties and application in food industry. Sci Technol Food Indus 2:62–64

    Google Scholar 

  • Zhang G, Ren Y, Sun H, Guo S, Zhang F, Zhang J Zhang H, Jia Z, Fei Z, Xu Y, Li H (2015) A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genomics 16:1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wang H, Yi H, Zhai W, Wang G, Fu Q (2016) Transcriptome profiling of Cucumis melo fruit development and ripening. Hortic Res 3:16014. doi: https://doi.org/10.1038/hortres.2016.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang MK, Zhang MP, Mazourek M, Tadmor Y, Li L (2014) Regulatory control of carotenoid accumulation in winter squash during storage. Planta 240:1063–1074

    Article  CAS  PubMed  Google Scholar 

  • Zhong YJ, Huang JC, Liu J, Li Y, Jiang Y, Xu ZF, Sandmann G, Chen F (2011) Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. J Exp Bot 62:3659–3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong YJ, Zhou YY, Li JX, Yu T, Wu TQ, Luo JN, Luo SB, Huang HX (2017) A high-density linkage map and QTL mapping of fruit-related traits in pumpkin (Cucurbita moschata Duch.). Sci Rep 7:12785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Gao P, Liu S, Zhu Z, Amanullah S, Davis AR, Luan F (2017) Comparative transcriptome analysis of two contrasting watermelon genotypes during fruit development and ripening. BMC Genomics 18:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Juan Zhong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, HX., Yu, T., Li, JX. et al. Characterization of Cucurbita maxima Fruit Metabolomic Profiling and Transcriptome to Reveal Fruit Quality and Ripening Gene Expression Patterns. J. Plant Biol. 62, 203–216 (2019). https://doi.org/10.1007/s12374-019-0015-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-019-0015-4

Keywords

Navigation