Skip to main content
Log in

The first Illumina-based de novo transcriptome sequencing and analysis of pumpkin (Cucurbita moschata Duch.) and SSR marker development

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Pumpkin (Cucurbita moschata Duch.) is an important vegetable crop cultivated worldwide. In this study, the pumpkin transcriptome was sequenced by RNA-seq using the Illumina Hiseq 2000. A total of 52,849,316 clean sequencing reads, 66,621 contigs and 62,480 unigenes were postulated. Based on similarity searches with known proteins, 47,899 genes (76.66 % of the unigenes) were annotated: 47,596, 34,368 and 16,700 mapped in Nr, Swissprot and COG classifications, respectively; 21,164 were annotated with 44 gene ontology functional categories; and 13,728 were annotated to 269 pathways by searching the Kyoto Encyclopedia of Genes and Genomes pathway database. A total of 7,814 simple sequence repeats (SSRs) were identified in these unigenes and 4,794 pairs of primers were designed for application of SSRs. To date, 35 SSRs have been validated in 12 pumpkin varieties and can separate the pumpkin varieties into Cucurbita maxima and Cucurbita moschata. In addition, the expression of eight photoperiod-related unigenes were studied in different pumpkin plants and it was deduced that they may contribute to late flowering and light insensitiveness. This research will provide an important platform to facilitate gene discovery for functional genome studies of pumpkin and to conduct SSR discovery for breeders for use in pumpkin breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GO:

Gene ontology

KEGG:

The Kyoto Encyclopedia of Genes and Genomes pathway database

SSR:

Simple sequence repeat

PPIS:

Photoperiod-insensitive

PPS:

Photoperiod-sensitive

FAO:

Food and Agriculture Organization of the United Nations

CDS:

Coding sequences

References

  • Ando K, Carr KM, Grumet R (2012) Transcriptome analyses of early cucumber fruit growth identifies distinct gene modules associated with phases of development. BMC Genom 13:518

    Article  CAS  Google Scholar 

  • Blanca J, Esteras C, Ziarsolo P, Pérez D, Fernández-Pedrosa V, Collado C et al (2012) Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genom 13:280

    Article  CAS  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Fabbrini F, Gaudet M, Bastien C, Zaina G, Harfouche A, Beritognolo I et al (2012) Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar. BMC Plant Biol 12:47

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González MV et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109:11872–11877

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guo SG, Liu JG, Zheng Y, Huang MY, Zhang HY, Gong GY et al (2011) Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. BMC Genom 12:454

    Article  CAS  Google Scholar 

  • Guo SG, Zhang JG, Sun HH, Salse J, Lucas WJ, Zhang HY et al (2012) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58

    Article  PubMed  Google Scholar 

  • Hall A, Bastow RM, Davis SJ, Hanano S, McWatters HG, Hibberd V (2003) The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks. Plant Cell 15:2719–2729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang SW, Li RQ, Zhang ZH, Li L, Gu XF, Fan W et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  PubMed  CAS  Google Scholar 

  • Huang LL, Yang X, Sun P, Tong W, Hu SQ (2012) The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers. PLoS ONE 7:e38653

    Article  CAS  Google Scholar 

  • Hyun TK, Rim Y, Jang HJ, Kim CH, Park J, Kumar R et al (2012) De novo transcriptome sequencing of Momordica cochinchinensis to identify genes involved in the carotenoid biosynthesis. Plant Mol Biol 79(4–5):413–427

    Article  PubMed  CAS  Google Scholar 

  • Iseli, C., Jongeneel, C.V., Bucher, P. (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol: 138–148

  • Isutsa DK, Mallowa SO (2013) Increasing leaf harvest intensity enhances edible leaf vegetable yields and decreases mature fruit yields in multi-purpose pumpkin. J Agric Biol Sci 8:610–615

    Google Scholar 

  • Ito S, Song YH, Josephson-Day AR, Miller RJ, Breton G, Olmstead RG (2012) FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. Proc Natl Acad Sci USA 109:3582–3587

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jiang B, Xie DS, Liu WR, Peng QW, He XM (2013) De Novo assembly and characterization of the transcriptome, and development of SSR Markers in wax gourd (Benicasa hispida). PLoS ONE 8(8):e71054

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim J, Kim Y, Yeom M, Kim JH, Nam HG (2008) FIONA1 is essential for regulating period length in the Arabidopsis circadian clock. Plant Cell 20:307–319

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformation 24:713–714

    Article  CAS  Google Scholar 

  • Lu TT, Lu GJ, Fan DL, Zhu CR, Li W, Zhao Q et al (2010) Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res 20:1238–1249

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high-molecular-weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BC et al (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–776

    Article  PubMed  CAS  Google Scholar 

  • Noh YS, Amasino RM (2003) PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. Plant Cell 15:1671–1682

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Noh B, Lee SH, Kim HJ, Yi G, Shin EA, Lee M et al (2004) Divergent roles of a pair of homologous Jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell 16:2601–2613

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS et al (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285:1579–1582

    Article  PubMed  CAS  Google Scholar 

  • Sato E, Nakamichi N, Yamashino T, Mizuno T (2002) Aberrant expression of the Arabidopsis circadian-regulated APRR5 gene belonging to the APRR1/TOC1 quintet results in early flowering and hypersensitiveness to light in early photomorphogenesis. Plant Cell Physiol 43:1374–1385

    Article  PubMed  CAS  Google Scholar 

  • Senior ML, Murphy JP, Goodman MM, Stuber CW (1998) Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci 38:1088–1098

    Article  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, Lipovich L et al (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tseng TS, Salomé PA, McClung CR, Olszewski NE (2004) SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. Plant Cell 16:1550–1563

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang P, Liu JC, Zhao QY (2002) Studies on nutrient composition and utilization of pumpkin fruit. J Inner Mongolia Agric Univ 23:52–54

    Google Scholar 

  • Wang ZY, Fang BP, Chen JY, Zhang XJ, Luo ZX, Huang LF et al (2010) De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genom 11:726

    Article  CAS  Google Scholar 

  • Wu JF, Wang Y, Wu SH (2008) Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering. Plant Physiol 148:948–959

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu TQ, Tang DZ, Chen WD, Huang HH, Wang R, Chen YF (2013) Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria. Gene 527:235–242

    Article  PubMed  CAS  Google Scholar 

  • Yadav M, Jain S, Tomar R, Prasad GBKS, Yadav H (2010) Medicinal and biological potential of pumpkin: an updated review. Nutr Res Rev 23:184–190

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Fang L, Zheng HK, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:293–297

    Article  Google Scholar 

  • Yu X, Li L, Li L, Guo M, Chory J, Yin Y (2008) Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci USA 105:7618–7623

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang F, Jiang ZM, Zhang EM (2000) Pumpkin function properties and application in food industry. Sci Technol Food Indus 21:62–64

    Google Scholar 

  • Zhang JN, Liang S, Duan JL, Wang J, Chen SL, Cheng ZS et al (2012) De novo assembly and characterization of the transcriptome during seed development, and generation of genic-SSR markers in Peanut (Arachis hypogaea L.). BMC Genom 13:90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Guangdong Academy of Agricultural Sciences, Southern China Innovation Center for help in providing instruments and equipment. This work was supported by Guangdong Natural Science Foundation (No. S2012010010722), Guangdong Academy of Agricultural Sciences Dean Fund (No. 201203); Science and Technology Infrastructure Construction Project of Guangdong Key Laboratory for New Technology Research of Vegetables (Grant No. 2013112) and “948″ project from Ministry of Agriculture of China (2012-Z55).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hexun Huang.

Additional information

Tingquan Wu and Shaobo Luo are co-first authors and contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Luo, S., Wang, R. et al. The first Illumina-based de novo transcriptome sequencing and analysis of pumpkin (Cucurbita moschata Duch.) and SSR marker development. Mol Breeding 34, 1437–1447 (2014). https://doi.org/10.1007/s11032-014-0128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0128-x

Keywords

Navigation