Skip to main content

Advertisement

Log in

Genetic Structure Analysis in Sugarcane (Saccharum spp.) Using Target Region Amplification Polymorphism (TRAP) Markers Based on Sugar- and Lignin-Related Genes and Potential Application in Core Collection Development

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Sugarcane is a main bioenergy crop and is highlighted worldwide in sugar, ethanol, and biomass production. Sugar and lignin contents are important quality traits for traditional and energy cane cultivar development, respectively. In the present study, genetic variability of a broad group of sugarcane basic germplasm accessions encompassing wild relatives and traditional and modern cultivars was assessed using target region amplification polymorphism (TRAP) markers derived from candidate genes involved in sugar and lignin metabolism. In total, 823 polymorphic markers (483 for sugar and 340 for lignin metabolism genes) were amplified; the average polymorphism information content values were highest for sugarcane wild relatives followed by traditional cultivars and modern cultivars. Genetic variability of the 96 genotypes captured by TRAP candidate genes for sugar and lignin metabolism was structured into two and three subpopulations, respectively. Based on the membership proportion (Q), modern cultivars inherited variability for genes involved in sugar metabolism from both S. officinarum and S. spontaneum. The genetic differentiation index based on sugar and lignin metabolism genes suggests moderate genetic differentiation among wild relatives, traditional cultivars, and modern cultivars. A core collection was established for sugar and lignin TRAP markers. Values for average genetic distance for the core collection based on sugar (0.761) and lignin (0.804) TRAP-derived markers were higher than those observed for all accessions, indicating that the core collections retained the most divergent accessions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abuzayed, M., N. El-Dabba, A. Frary, and S. Doganlar. 2017. GDdom: An Online Tool for Calculation of Dominant Marker Gene Diversity. Biochemical Genetics 55: 155–157.

    Article  CAS  PubMed  Google Scholar 

  • Aitken, K., and M. McNeill. 2010. Diversity Analysis. In Genetics, Genomics and Breeding of Sugarcane, ed. R. Henry and C. Kole, 19–42. Enfield: Science Publishers.

    Google Scholar 

  • Aitken, K., J. Li, G. Piperidis, C. Qing, F. Yuanhong, and P. Jackson. 2018. Worldwide Genetic Diversity of the Wild Species Saccharum spontaneum and Level of Diversity Captured Within Sugarcane Breeding Programs. Crop Science 58(1): 218–229.

    Article  Google Scholar 

  • Alwala, S., A. Suman, J.A. Arro, J.C. Vermis, and C.A. Kimbeng. 2006. Target Region Amplification Polymorphism (TRAP) for Accessing Genetic Diversity in Sugarcane Germplasm Collections. Crop Science 46(1): 448–455.

    Article  CAS  Google Scholar 

  • Alwala, S., C. Kimbeng, J.C. Veremis, and K.A. Gravois. 2008. Linkage Mapping and Genome Analysis in a Saccharum Interspecific Cross Using AFLP SRAP and TRAP Markers. Euphytica 164(1): 37–51.

    Article  CAS  Google Scholar 

  • Amalraj, A., and N. Balasundaram. 2006. On the Taxonomy of the Members of ‘Saccharum Complex’. Genetic Resources and Crop Evolution 53(1): 35–41.

    Article  Google Scholar 

  • Arceneaux, G. 1965. Cultivated Sugarcane of the World and Their Botanical Derivation. Proceedings of the International Society of Sugar Cane Technologists 12: 844–854.

    Google Scholar 

  • Brown, J.S., R.J. Schnell, E.J. Power, S.L. Douglas, and D.N. Kuhn. 2007. Analysis of Clonal Germplasm from Five Saccharum Species: S. barberi, S. robustum, S. officinarum, S. sinense and S. spontaneum: A Study of Inter- and Intra Species Relationships Using Microsatellite Markers. Genetic Resources and Crop Evolution 54(3): 627–648.

    Article  CAS  Google Scholar 

  • Cesarino, I., P. Araújo, A.P. Domingues Júnior, and P. Mazzafera. 2012. An Overview of Lignin Metabolism and Its Effect on Biomass Recalcitrance. Brazilian Journal of Botany 35(4): 303–311.

    Article  Google Scholar 

  • Costa, F. S. 2018 Análise Mensal Cana-de-açúcar. Conab. (http://www.conab.gov.br). Accessed 12 July 2018.

  • Creste, S., K.A.G. Accoroni, L.R. Pinto, R. Vencosvskv, M.A. Gimenes, M.A. Xavier, and M.G.A. Landell. 2010. Genetic Variability Among Sugarcane Genotypes Based on Polymorphism in Sucrose Metabolism and Drought Tolerance Genes. Euphytica 172(3): 435–446.

    Article  CAS  Google Scholar 

  • Earl, D., and B. Von-Holdt. 2010. STRUCTURE HARVESTER: a Website and Program for Visualizing STRUCTURE Output and Implementing the EVANNO Method. Conservation Genetic Resources 4(2): 359–361.

    Article  Google Scholar 

  • Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the Number of Clusters of Individuals Using the Software STRUCTURE: A Simulation Study. Molecular Ecology 14: 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Excofier, L., and H. Lischer. 2010. Arlequin Suite ver. 3.5: A New Series of Programs to Perform Population Genetics Analyses Under Linux and Windows. Molecular Ecology Resources 10: 564–567.

    Article  Google Scholar 

  • Ferrari, F. 2010. Caracterização Cromossômica em Cana-de-Açúcar (Saccharum spp., Poacea). Master’s thesis, University of Campinas, Campinas.

  • Govindaraj, P., V.A. Amalraj, K. Mohanraj, and N.V. Nair. 2014. Collection, Characterization and Phenotypic Diversity of Saccharum spontaneum L. from Arid and Semi Arid Zones of Northwestern India. Sugar Tech 16(1): 36–43.

    Article  Google Scholar 

  • Grivet, L., C. Daniels, J.C. Glaszmann, and A. D’hont. 2004. A Review of Recent Molecular Genetics Evidence for Sugarcane Evolution and Domestication. Ethnobotanic Research and Applications 2: 9–17.

    Article  Google Scholar 

  • Hu, J., and B.A. Vick. 2003. Target Region Amplification Polymorphism: A Novel Marker Technique for Plant Genotyping. Plant Molecular Biology Reporter 21(3): 289–294.

    Article  CAS  Google Scholar 

  • Landell, M.G.A., M.S. Scarpari, M.A. Xavier, I.A. Anjos, A.S. Baptista, C.L. Aguiar, D.N. Silva, M.A.P. Bidóia, S.R. Brancalião, J.A. Bressiani, M.F. Campos, P.E.M. Miguel, T.N. Silva, V.H.P. Silva, L.O.S. Anjos, and B.H. Ogata. 2013. Residual Biomass Potential of Commercial and Pre-commercial Sugarcane Cultivars. Scientia Agricola 70(5): 299–304.

    Article  Google Scholar 

  • Li, G., and C.F. Quiros. 2001. Sequence-Related Amplified Polymorphism (SRAP), a New Marker System Based on a Simple PCR Reaction: Its Application to Mapping and Gene Tagging in Brassica. Theoretical and Applied Genetics 103: 455–461.

    Article  CAS  Google Scholar 

  • Manechini, J.R.V., J.B. Costa, B.T. Pereira, L.A. Carlini-Garcia, M.A. Xavier, M.G.A. Landell, and L.R. Pinto. 2018. Unraveling the Genetic Structure of Brazilian Commercial Sugarcane Cultivars Through Microsatellite Markers. PLoS ONE 13(4): e0195623. https://doi.org/10.1371/journal.pone.0195623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melloni, M.L.G., M.N.G. Melloni, M.S. Maximiliano, J.C. Garcia, M.G.A. Landell, and L.R. Pinto. 2015. Flowering of Sugarcane Genotypes Under Different Artificial Photoperiod Conditions. American Journal of Plant Sciences 6: 456–463.

    Article  Google Scholar 

  • Melloni, M.N.G., M.L.G. Melloni, A.C. Neuber, D. Perecin, M.G.A. Landell, and L.R. Pinto. 2016. Efficiency of Different Antimitotics in Cytological Preparations of Sugarcane. Sugar Tech 18(2): 222–228.

    Article  CAS  Google Scholar 

  • Nayak, S.N., J. Song, A. Villa, B. Pathak, T. Ayala-Silva, X. Yang, J. Todd, N.C. Glynn, D.N. Kuhn, B. Glaz, R.A. Gilbert, J.C. Comstock, and J. Wang. 2014. Promoting Utilization of Saccharum spp. Genetic Resources Through Genetic Diversity Analysis and Core Collection Construction. PLOS ONE 9(10): e110856. https://doi.org/10.1371/journal.pone.0110856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panje, R.R., and C.N. Babu. 1960. Studies in Saccharum spontaneum: Distribution and Geographical Association of Chromosome Numbers. Cytologia 25: 152–172.

    Article  Google Scholar 

  • Perrier, X., and J. Jacquemoud-Collet. DarWIN software. 2006. 56.

  • Piperidis, N., G. Piperidis, and A. D’Hont. 2010. Molecular Cytogenetics. In Genetics, Genomics and Breeding of Sugarcane, ed. R. Henry and C. Kole, 9–19. Enfield: Science Publishers.

    Google Scholar 

  • Portieles, R., R. Rodríguez, and M.T. Cornide. 2004. Cytogenetic Characterization of New Wild Clones of the Saccharum Complex. Cultivos Tropicales 25(1): 17–22.

    Google Scholar 

  • Pritchard, J., M. Stephens, and P. Donnelly. 2000. Inference of Population Structure Using Multilocus Genotype Data. Genetics 155(2): 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramdoyal, K., and G.H. Badaloo. 2002. Prebreeding in Sugarcane with an Emphasis on the Programme of the Mauritius Sugar Industry Research Institute. https://www.researchgate.net/publication/267260870. Accessed 20 March 2019.

  • Rezende, C.A., M.A. Lima, P. Maziero, E.R. Azevedo, W. Garcia, and I. Polikarpov. 2011. Chemical and Morphological Characterization of Sugarcane Bagasse Submitted to a Delignification Process for Enhanced Enzymatic Digestibility. Biotechnology for Biofuels 4: 54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarath Padmanabhan, T.S., and G. Hemaprabha. 2018. Genetic Diversity and Population Structure Among 133 Elite Genotypes of Sugarcane (Saccharum spp.) for Use as Parents in Sugarcane Varietal Improvement. 3 Biotech 8: 339. https://doi.org/10.1007/s13205-018-1364-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou, N., and M. Nei. 1987. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution 4(4): 406–425.

    CAS  PubMed  Google Scholar 

  • Shrivastava, A.K., and S. Srivastava. 2016. Diversity of the Germplasm of Saccharum Species and Related Genera Available for use in Directed Breeding Programmes for Sugarcane Improvement. Current Science 111(3): 475–481.

    Article  CAS  Google Scholar 

  • Silva, J.A.G., P.M.A. Costa, T.G. Marconi, E.J.S. Barreto, N. Solís-Gracia, J.-W. Park, and N.C. Glynn. 2018. Agronomic and Molecular Characterization of Wild Germplasm Saccharum spontaneum for Sugarcane and Energy Cane Breeding Purposes. Scientia Agricola 75: 329–338.

    Article  Google Scholar 

  • Sobhakumari, V.P. 2013. New Determinations of Somatic Chromosome Number in Cultivated and Wild Species of Saccharum. Caryologia: International Journal of Cytology, Cytosystematics and Cytogenetics 66(3): 268–274.

    Article  Google Scholar 

  • Song, J., X.M.F.R. Yang, L.G. Resende, J. Neves, J. Todd, J.C. Zhang, J. Comstock, and J. Wang. 2016. Natural Allelic Variations in Highly Polyploidy Saccharum Complex. Frontiers in Plant Science 8(7): 804. https://doi.org/10.3389/fpls.2016.00804.

    Article  Google Scholar 

  • Suman, A., C.A. Kimbeng, S.J. Edme, and J. Veremis. 2008. Sequence-Related Amplified Polymorphism (SRAP) Markers for Assessing Genetic Relationships and Diversity in Sugarcane Germplasm Collections. Plant Genet Resources: Characterization and Utilization 6(3): 222–231.

    Article  Google Scholar 

  • Suman, A., K. Ali, J. Arro, A.S. Parco, C.A. Kimbeng, and N. Baisakh. 2012. Molecular Diversity Among Members of the Saccharum Complex Assessed Using TRAP Markers Based on Lignin-Related Genes. BioEnergy Research 5(1): 197–205.

    Article  CAS  Google Scholar 

  • Vieira, M.L.C., C.B. Almeida, C.A. Oliveira, L.O. Tacuatiá, C.F. Munhoz, L.A. Cauz-Santos, L.R. Pinto, C.B. Monteiro-Vitorello, M.A. Xavier, and E.R. Forni-Martins. 2018. Revisiting Meiosis in Sugarcane: Chromosomal Irregularities and the Prevalence of Bivalent Configurations. Frontiers in Plant Science 9: 1–12. https://doi.org/10.3389/fgene.2018.00213.

    Article  CAS  Google Scholar 

  • Yang, X., J. Song, J. Todd, Z. Peng, D. Paudel, Z. Luo, X. Ma, Q. You, E. Hanson, Z. Zhao, Y. Zhao, J. Zhang, R. Ming, and J. Wang. 2018. Target Enrichment Sequencing of 307 Germplasm Accessions Identified Ancestry of Ancient and Modern Hybrids and Signatures of Adaptation and Selection in Sugarcane (Saccharum spp.), a ‘sweet’ Crop with ‘bitter’ Genomes. Plant Biotechnology Journal 17(2): 1–11.

    Google Scholar 

  • Wright, S. 1978. Evolution and Genetics of Populations: Variability Within and Among Natural Populations. Chicago: University of Chicago Press.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Fundacão de Amparo à Pesquisa do Estado de São Paulo (FAPESP Grant: 2013/22500-5).

Funding

This study was funded by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo (2013/22500-5).

Author information

Authors and Affiliations

Authors

Contributions

CADKJ contributed to data analysis and manuscript writing. JRVM helped in data organization and analysis. JBC and TMF worked for DNA extraction and genotyping. ACRP contributed to manuscript writing and editing. LRP and RXC helped in design and conceptualization of the experiment and research funding. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luciana Rossini Pinto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junior, C.A.D.K., Manechini, J.R.V., Corrêa, R.X. et al. Genetic Structure Analysis in Sugarcane (Saccharum spp.) Using Target Region Amplification Polymorphism (TRAP) Markers Based on Sugar- and Lignin-Related Genes and Potential Application in Core Collection Development. Sugar Tech 22, 641–654 (2020). https://doi.org/10.1007/s12355-019-00791-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-019-00791-0

Keywords

Navigation