Skip to main content
Log in

Dynamic Response of Key Germination Traits to NaCl Stress in Sugar Beet Seeds

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

This study was aimed to investigate the effects of two different concentrations of NaCl on germination traits of seeds of four sugar beet (Beta vulgaris L.) hybrids, including a commercial variety. The seeds were sown in Petri dishes with two levels of NaCl (60 and 180 mM) and the control (0 mM NaCl). Germination and water content and electrical conductivity, as a result of solute leakage from seeds, were analyzed through linear and nonlinear equations. Results showed that the commercial variety germination seemed to be more sensitive to a moderate salt concentration (60 mM NaCl) which, conversely, was not detrimental to water uptake and germination rate in the other hybrids. Adverse effects were more evident at higher salt level (180 mM NaCl), although to a different extent, in all hybrids and for most of the parameters evaluated. This study demonstrated that salinity could induce numerous disorders in sugar beet seeds during the germination process, the seriousness of which depended on both the salt level and genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agboola, D.A. 1998. Effect of saline solutions and salt stress on seed germination of one tropical forest tree species. Revista de Biologia Tropical 46: 1109–1115.

    Google Scholar 

  • Aliotta, G., G. Cafiero, V. De Feo, and R. Sacchi. 1994. Potential allelochemicals from Ruta graveolens L. and their action on radish seeds. Journal of Chemical Ecology 20: 2761–2775. https://doi.org/10.1007/BF02098388.

    Article  CAS  PubMed  Google Scholar 

  • Almansouri, M., J.M. Kinet, and S. Lutts. 2001. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil 231: 243–254.

    Article  CAS  Google Scholar 

  • Bewley, J.D., and M. Black. 1994. Seeds: Physiology of development and germination. New York: Plenum Press.

    Book  Google Scholar 

  • Bewley, J.D. 1997. Seed germination and dormancy. Plant Cell 9: 1055–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittebiere, A.K., and C. Mony. 2015. Plant traits respond to the competitive neighbourhood at different spatial and temporal scales. Annals of Botany 115: 117–126.

    Article  PubMed  Google Scholar 

  • Bretagnolle, F., J.D. Thompson, and R. Lumaret. 1995. The influence of seed size variation on seed germination and seed vigour in diploid and tetraploid Dactylis glomerata L. Annals of Botany 76: 607–615.

    Article  Google Scholar 

  • Brown, R.F., and D.G. Mayer. 1988. Representing cumulative germination. 1. A critical analysis of single-value germination indices. Annals of Botany 61: 117–125.

    Article  Google Scholar 

  • Cantliffe, D.J. 2003. Seed enhancements. Acta Horticulturae 607: 53–62.

    Article  Google Scholar 

  • Crowe, J.H., and L.M. Crowe. 1992. Membrane integrity in anhydrobiotic organisms: Toward a mechanism for stabilizing dry seeds. In Water and life, ed. G.N. Somero, C.B. Osmond, and C.L. Bolis, 87–103. Berlin: Springer.

    Chapter  Google Scholar 

  • Da Silva Ferreira, C., M.T. Fernandez Piedade, M.A. Silva Tinè, D.R. Rossatto, P. Parolin, and M.S. Buckeridge. 2009. The role of carbohydrates in seed germination and seedling establishment of Himatanthus sucuuba, an Amazonian tree with populations adapted to flooded and non-flooded conditions. Annals of Botany 104: 1111–1119.

    Article  CAS  PubMed Central  Google Scholar 

  • Dinneny, J.R. 2015. Traversing organizational scales in plant salt-stress responses. Current Opinion in Plant Biology 23: 70–75.

    Article  CAS  PubMed  Google Scholar 

  • Durr, C., and J. Boiffin. 1995. Sugar beet seedling growth from germination to first leaf stage. The Journal of Agricultural Science 124: 427–435. https://doi.org/10.1017/S002185960007338X.

    Article  Google Scholar 

  • Durrant, M.J., and R.J. Gummerson. 1990. Factors associated with germination of sugar beet seed in the standard test and establishment in the field. Seed Science and Technology 18: 561–575.

    Google Scholar 

  • Egan, T.P., I.A. Ungar, and J.F. Meekins. 1997. The effects of NaCl, KCl, Na2SO4 and K2NO4 on the germination of Atriplex prostrata (Chenopodiaceae). Journal of Plant Nutrition 20: 1723–1730.

    Article  CAS  Google Scholar 

  • Flowers, T., and A. Yeo. 1995. Breeding for salinity resistance in crop plants: Where next? Australian Journal of Plant Physiology 22: 875–884.

    Google Scholar 

  • Francois, L.E., E.V. Maas, T.J. Donovan, and V.L. Young. 1986. Effect of salinity on grain yield, quality, vegetative growth and germination of semi dwarf and durum wheat. Agronomy Journal 78: 1053–1058.

    Article  CAS  Google Scholar 

  • Geng, Y., R. Wu, C. Wei Wee, F. Xie, X. Wei, P.M. Yeen Chan, C. Tham, L. Duan, and J.R. Dinneny. 2013. A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. The Plant Cell 25: 2132–2154. https://doi.org/10.1105/tpc.113.112896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Getnet, D.A., S.J. Roy, M. Zhou, J.P. Bowman, and S. Shabala. 2014. Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC Plant Biology 14: 113.

    Article  CAS  Google Scholar 

  • Ghoulam, C., and K. Fares. 2001. Effect of salinity on seed germination and seedling growth of sugar beet (Beta vulgaris L.). Seed Science Technology 29: 357–364.

    Google Scholar 

  • Jafarzadeh, A.A., and N. Aliasgharzad. 2007. Salinity and salt composition effects on seed germination and root length of four sugar beet cultivars. Biologia Bratislava 62: 562–564.

    Article  Google Scholar 

  • Kardol, P., G.B. De Deyn, E. Laliberté, P. Mariotte, and C.V. Hawkes. 2013. Biotic plant-soil feedbacks across temporal scales. Journal of Ecology 101: 309–315. https://doi.org/10.1111/1365-2745.12046.

    Article  Google Scholar 

  • Katembe, J., I.A. Ungar, and P. Mitchell. 1998. Effect of salinity on germination and seedlings growth of two Atriplex species (Chenopodiaceae). Annals of Botany 82: 167–175.

    Article  Google Scholar 

  • Kneebone, W.R. 1976. Some genetic aspects of seed vigor. Journal of Seed Technology 1: 86–97.

    Google Scholar 

  • Kumar, V., S.V. Singh, A. Mithra, S.L. Krishnamurthy, S.K. Parida, S. Jain, K.K. Tiwari, K. Pankaj, A.R. Rao, S.K. Sharma, J.P. Khurana, N.K. Singh, and T. Mohapatra. 2015. Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Research 22: 1–13.

    Article  CAS  Google Scholar 

  • Lopez, A., and D.F. Grabe. 1973. Effect of protein content on seed performance in wheat (Triticum aestivum L.). Proceedings of the Association of Official Seed Analysts 63: 106–116.

    Google Scholar 

  • Lutts, S., J.M. Kinet, and J. Bouharmont. 1995. Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany 46: 1843–1852.

    Article  CAS  Google Scholar 

  • Mahdi, Z., G. Mahdi, and M. Khodadad. 2012. Role of salt stress on seed germination and growth of sugar beet cultivars. International Journal of Recent Scientific Research 3: 800–804.

    Google Scholar 

  • Mahesh, S., and N. Sathyanarayana. 2015. Intra-specific variability for salinity tolerance in Indian Mucuna pruriens L. (DC.) germplasm. Journal of Crop Science and Biotechnology 18: 181–194.

    Article  Google Scholar 

  • Matthews, S., and M. Khajeh-Hosseini. 2006. Mean germination time as an indicator of emergence performance in soil of seed lots of maize (Zea mays). Seed Science and Technology 34: 339–347. https://doi.org/10.15258/sst.2006.34.2.09.

    Article  Google Scholar 

  • McNair, J.N., A. Sunkara, and D. Frobish. 2012. How to analyse seed germination data using statistical time-to-event analysis: Non-parametric and semi-parametric methods. Seed Science Research 22: 77–95. https://doi.org/10.1017/s0960258511000547.

    Article  Google Scholar 

  • Mohammad, S., and D.N. Sen. 1990. Germination behavior of some halophytes in Indian desert. Indian Journal of Experimental Biology 28: 545–549.

    Google Scholar 

  • Munns, R. 2005. Genes and salt tolerance: Bringing them together. New Phytologist 167: 645–663. https://doi.org/10.1111/j.1469-8137.2005.01487.x.

    Article  CAS  Google Scholar 

  • Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651–681.

    Article  CAS  PubMed  Google Scholar 

  • Parida, A.K., and A.B. Das. 2005. Salt tolerance and salinity effect on plants: A review. Ecotoxicology and Environmental Safety 60: 324–349.

    Article  CAS  PubMed  Google Scholar 

  • Parihar, P., S. Singh, R. Singh, V.P. Singh, and S.M. Prasad. 2015. Effect of salinity stress on plants and its tolerance strategies: A review. Environmental Science and Pollution Research 22: 4056–4075.

    Article  CAS  PubMed  Google Scholar 

  • Press, W.H., S.A. Teukosky, W.T. Wetterling, and B.P. Flannery. 1992. Numerical recipes in C, The art of scientific computing, 2nd ed. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pujol, J.A., J.F. Calvo, and L. Ramírez-Díaz. 2000. Recovery of germination from different osmotic conditions by four halophytes from south-eastern Spain. Annals of Botany 85: 279–286.

    Article  Google Scholar 

  • Ranal, M.A., and D. Garcia de Santana. 2006. How and why to measure the germination process? Revista Brasileira de Botanica 29: 1–11.

    Google Scholar 

  • Rani, C.R., C. Reema, S. Alka, and P.K. Singh. 2012. Salt tolerance of Sorghum bicolor cultivars during germination and seedling growth. Research Journal of Recent Sciences 1: 1–10.

    Google Scholar 

  • Santo, A., E. Mattana, and G. Bacchetta. 2015. Inter- and intra-specific variability in seed dormancy loss and germination requirements in the Lavatera triloba aggregate (Malvaceae). Plant Ecology and Evolution 148: 100–110.

    Article  Google Scholar 

  • Shafii, B., W.J. Price, J.B. Swenson, and G.A. Murray. 1991. Nonlinear estimation of growth curve models for germination data analysis. In Proceedings of the 1991 Kansas State University Conference on Applied Statistics in Agriculture, USA, pp. 19–36.

  • Simon, E.W. 1974. Phospholipids and plant membrane permeability. New Phytologist 73: 377–420.

    Article  CAS  Google Scholar 

  • Simon, E.W. 1984. Early events in germination. In Seed physiology: Germination and reserve mobilization, vol. 2, ed. D.R. Murray, 77–115. Orlando: Academic Press.

    Chapter  Google Scholar 

  • Sivritepe, N., H.O. Sivritepe, and A. Eris. 2003. The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Scientia Horticulturae 97: 229–237.

    Article  CAS  Google Scholar 

  • Snider, J.L., G.D. Collins, J. Whitaker, K.D. Chapman, P. Horn, and T.L. Grey. 2014. Seed size and oil content are key determinants of seedling vigor in Gossypium hirsutum. Journal of Cotton Science 18: 1–9.

    Google Scholar 

  • Sorgonà, A., M.R. Abenavoli, and G. Cacco. 2005. A comparative study between two citrus rootstocks: Effect of nitrate on the root morpho-topology and net nitrate uptake. Plant and Soil 270: 257–267.

    Article  CAS  Google Scholar 

  • Sorgonà, A., M.R. Abenavoli, P.G. Gringeri, and G. Cacco. 2006. A comparison of nitrogen use efficiency definitions in Citrus rootstocks. Scientia Horticulturae 109: 389–393.

    Article  CAS  Google Scholar 

  • Souza, M.L., and M. Fagundes. 2014. Seed size as key factor in germination and seedling development of Copaifera langsdorffii (Fabaceae). American Journal of Plant Sciences 5: 2566–2573.

    Article  Google Scholar 

  • Stevanato, P.G., G. Geng, G. Cacco, E. Biancardi, M.R. Abenavoli, A. Romano, and A. Sorgonà. 2013. Morpho-physiological traits of sugar beet exposed to salt stress. International Sugar Journal, 756–765.

  • Steppuhn, H., M.T. van Genuchten, and C.M. Grieve. 2005. Root-zone salinity: II. Indices for tolerance in agricultural crops. Crop Science 45: 221–232.

    Article  Google Scholar 

  • Yadav, S., M. Irfan, A. Ahmad, and S. Hayat. 2011. Causes of salinity and plant manifestations to salt stress. Journal of Environmental Biology 32: 667–685.

    PubMed  Google Scholar 

  • Zhao, K.F., J. Song, H. Fan, S. Zhou, and M. Zhao. 2010. Growth response to ionic and osmotic stress of NaCl in salt-tolerant and salt-sensitive maize. Journal of Integrative Plant Biology 52: 468–475. https://doi.org/10.1111/j.1744-7909.2010.00947.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piergiorgio Stevanato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romano, A., Stevanato, P., Sorgonà, A. et al. Dynamic Response of Key Germination Traits to NaCl Stress in Sugar Beet Seeds. Sugar Tech 21, 661–671 (2019). https://doi.org/10.1007/s12355-018-0660-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-018-0660-9

Keywords

Navigation