Skip to main content
Log in

The effect of CT-based attenuation correction on the automatic perfusion score of myocardial perfusion imaging using a dedicated cardiac solid-state CZT SPECT/CT

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Data regarding cardiac cadmium-zinc-telluride (CZT)-specific augmented databases and their impact on CT-based attenuation correction (AC) perfusion scores in myocardial perfusion imaging (MPI) were obtained on a multiple-pinhole CZT SPECT/CT.

Methods and Results

Summed stress (SSS) and rest scores (SRS) were measured using automated software in three independent patient groups: group 1 (n = 80) underwent MPI on both CZT and conventional sodium iodide (NaI) devices, group 2 (n = 80) with low coronary artery disease likelihood and normal MPI provided reference CZT databases; and group 3 (n = 152) served to compare AC and non-AC (NAC) scores on CZT. Group 1 CZT and NaI scores gave a significant 1:1 linear correlation for CZT scores referenced to the custom database vs NaI scores referenced to the default database, but these were not concordant when CZT scores were referenced to the default database. AC significantly decreased average SSS and SRS in men vs NAC, 4.29 ± 6.30 vs 5.37 ± 7.26 (P < 0.001) and 2.37 ± 4.72 vs 3.13 ± 5.85 (P < 0.001), but not in women, 2.28 ± 3.42 vs 2.28 ± 3.08 (p NS) and 0.46 ± 1.51 vs 0.61 ± 1.86, (p NS), respectively.

Conclusions

Specifically designed databases for solid-state CZT cardiac SPECT provide accurate quantitation of perfusion scores concordant with those previously validated for conventional SPECT. AC and NAC CZT scores differed significantly, especially in men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

AC:

Attenuation correction

CAD:

Coronary artery disease

CTAC:

Computed tomography-based attenuation correction

CZT:

Cadmium-zinc-telluride

MPI:

Myocardial perfusion imaging

NAC:

No attenuation correction

NaI:

Sodium iodide

SPECT:

Single-photon emission computerized tomography

SRS:

Summed rest score

SSS:

Summed stress score

References

  1. Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging. J Am Coll Cardiol. 2009;53:2201-29.

    Article  PubMed  Google Scholar 

  2. Hendel RC, Abbott BG, Bateman TM, Blankstein R, Calnon DA, Leppo JA, et al. ASNC information statement: The role of radionuclide myocardial perfusion imaging for asymptomatic individuals. J Nucl Cardiol. 2011;18:3-15.

    Article  PubMed  Google Scholar 

  3. Herzog BA, Buechel RR, Katz R, Brueckner M, Husmann L, Burger IA, et al. Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: Optimized protocol for scan time reduction. J Nucl Med. 2010;51:46-51.

    Article  PubMed  Google Scholar 

  4. Iskandrian AE. Stress-only myocardial perfusion imaging: A new paradigm. J Am Coll Cardiol. 2010;55:231-3.

    Article  PubMed  Google Scholar 

  5. Dorbala S, Di Carli MF, Delbeke D, Abbara S, DePuey EG, Dilsizian V, et al. SNMMI/ASNC/SCCT guideline for cardiac SPECT/CT and PET/CT 1.0*. J Nucl Med. 2013;54:1485-507.

    Article  PubMed  Google Scholar 

  6. Organisation for Economic Co-Operation and Development, Nuclear Energy Agency. The supply of medical radioisotopes implementation of the HLG-MR policy approach: Results from a self-assessment by the global 99Mo/99mTc supply chain. The Supply of medical radioisotopes series 2013. http://www.oecdnea. org/med-radio/med-radio-series.html.

  7. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: Design, system validation and future potential. Eur J Nucl Med Mol Imaging. 2010;37:1887-902.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ather S, Iqbal F, Gulotta J, Aljaroudi W, Heo J, Iskandrian AE, Hage FG. Comparison of three commercially available softwares for measuring left ventricular perfusion and function by gated SPECT myocardial perfusion imaging. J Nucl Cardiol. 2014;21:673-81.

    Article  PubMed  Google Scholar 

  9. Germano G, Kavanagh PB, Waechter P, Areeda J, Van Kriekinge S, Sharir T, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. I: Technical principles and reproducibility. J Nucl Med. 2000;41:712-9.

    PubMed  CAS  Google Scholar 

  10. Berman DS, Kang X, Gransar H, Gerlach J, Friedman JD, Hayes SW, et al. Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J Nucl Cardiol. 2009;16:45-53.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nakazato R, Tamarappoo BK, Kang X, Wolak A, Kite F, Hayes SW, et al. Quantitative upright–supine high-speed SPECT myocardial perfusion imaging for detection of coronary artery disease: Correlation with invasive coronary angiography. J Nucl Med. 2010;51:1724-31.

    Article  PubMed  Google Scholar 

  12. Garcia EV, Folks RD, Raggi P, Keidar Z, Askew JW, Rispler S, et al. Quantitation of gated rest/stress Tc-99m tetrofosmin ultrafast CZT myocardial perfusion imaging: Development of normal limits and multicenter validation. The 15th Annual Scientific Session of the American Society of Nuclear Cardiology September 23-26, 2010. ASNC Abstracts. 2010;17:721.

    Google Scholar 

  13. Duvall WL, Slomka PJ, Gerlach JR, Sweeny JM, Baber U, Croft LB, et al. High-efficiency SPECT MPI: Comparison of automated quantification, visual interpretation, and coronary angiography. J Nucl Cardiol. 2013;20:763-73.

    Article  PubMed  Google Scholar 

  14. Sharir T, Pinskiy M, Pardes A, Rochman A, Prokhorov V, Kovalski G, et al. Comparison of the diagnostic accuracies of very low stress-dose with standard-dose myocardial perfusion imaging: Automated quantification of one-day, stress-first SPECT using a CZT camera. J Nucl Cardiol. 2016;23:11-20.

    Article  PubMed  Google Scholar 

  15. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: Differential stratification for risk of cardiac death and myocardial infarction. Circulation. 1998;97:535-43.

    Article  PubMed  CAS  Google Scholar 

  16. Genovesi D, Giorgetti A, Gimelli A, Kusch A, D’Aragona Tagliavia I, Casagranda M, et al. Impact of attenuation correction and gated acquisition in SPECT myocardial perfusion imaging: Results of the multicentre SPAG (SPECT attenuation correction vs gated) study. Eur J Nucl Med Mol Imaging. 2011;38:1890-8.

    Article  PubMed  CAS  Google Scholar 

  17. Pourmoghaddas A, Vanderwerf K, Ruddy TD, Wells RG. Scatter correction improves concordance in SPECT MPI with a dedicated cardiac SPECT solid-state camera. J Nucl Cardiol. 2014;22:334-43.

    Article  PubMed  Google Scholar 

  18. Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA. Appropriate use criteria for cardiac radionuclide imaging: A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. J Am Coll Cardiol. 2009;53:2201-9.

    Article  PubMed  Google Scholar 

  19. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med. 1979;300:1350-8.

    Article  PubMed  CAS  Google Scholar 

  20. Hebert T, Leahy R. A generalized EM algorithm for 3D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Trans Med Imaging. 1989;8:194-202.

    Article  PubMed  CAS  Google Scholar 

  21. Green PJ. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging. 1990;9:84-93.

    Article  PubMed  CAS  Google Scholar 

  22. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601-9.

    Article  PubMed  CAS  Google Scholar 

  23. Kennedy JA, Israel O, Frenkel A. Directions and magnitudes of misregistration of CT attenuation-corrected myocardial perfusion studies: Incidence, impact on image quality, and guidance for reregistration. J Nucl Med. 2009;50:1471-8.

    Article  PubMed  Google Scholar 

  24. Hindorf C, Oddstig J, Hedeer F, Hansson MJ, Jögi J, Engblom H. Importance of correct patient positioning in myocardial perfusion SPECT when using a CZT camera. J Nucl Cardiol. 2014;21:695-702.

    Article  PubMed  Google Scholar 

  25. Liu CJ, Cheng JS, Chen YC, Huang YH, Yen RF. A performance comparison of novel cadmium–zinc–telluride camera and conventional SPECT/CT using anthropomorphic torso phantom and water bags to simulate soft tissue and breast attenuation. Ann Nucl Med. 2015;29:342-50.

    Article  PubMed  Google Scholar 

  26. Kennedy JA, Israel O, Frenkel A. 3D iteratively reconstructed spatial resolution map and sensitivity characterization of a dedicated cardiac SPECT camera. J Nucl Cardiol. 2014;21:443-52.

    Article  PubMed  Google Scholar 

  27. Fiechter M, Gebhard C, Fuchs TA, Ghadri JR, Stehli J, Kazakauskaite E, et al. Cadmium-zinc-telluride myocardial perfusion imaging in obese patients. J Nucl Med. 2012;53:1401-6.

    Article  PubMed  CAS  Google Scholar 

  28. Gimelli A, Bottai M, Genovesi D, Giorgetti A, Di Martino F, Marzullo P. High diagnostic accuracy of low-dose gated-SPECT with solid-state ultrafast detectors: Preliminary clinical results. Eur J Nucl Med Mol Imaging. 2012;39:83-90.

    Article  PubMed  CAS  Google Scholar 

  29. DePuey EG. How to detect and avoid myocardial perfusion SPECT artifacts. J Nucl Med. 1994;35:699-702.

    PubMed  Google Scholar 

  30. Jameria ZA, Abdallah M, Fernandez-Ulloa M, O’Donnell R, Dwivedi AK, Washburn E, et al. Analysis of stress-only imaging, comparing upright and supine CZT camera acquisition to conventional gamma camera images with and without attenuation correction, with coronary angiography as a reference. J Nucl Cardiol. 2017. doi:10.1007/s12350-017-0781-7.

    Article  PubMed  Google Scholar 

Download references

Disclosures

Ora Israel is a consultant to GE Healthcare. No other author has any financial disclosures in relationship to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Kennedy PhD.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, J.A., Brodov, Y., Weinstein, A.L. et al. The effect of CT-based attenuation correction on the automatic perfusion score of myocardial perfusion imaging using a dedicated cardiac solid-state CZT SPECT/CT. J. Nucl. Cardiol. 26, 236–245 (2019). https://doi.org/10.1007/s12350-017-0905-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-017-0905-0

Keywords

Navigation