Skip to main content
Log in

Comparison of the diagnostic accuracies of very low stress-dose with standard-dose myocardial perfusion imaging: Automated quantification of one-day, stress-first SPECT using a CZT camera

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Previous studies have demonstrated accurate diagnosis of reduced dose myocardial perfusion imaging (MPI) using Cadmium-Zinc-Telluride (CZT) technology. We compared the diagnostic performances of very low stress-dose (<2 mSv) with standard-dose stress-first, quantitative MPI using a CZT camera.

Methods

Patients without known coronary artery– disease who underwent a stress-first Tc-99 m sestamibi CZT-MPI and invasive coronary angiography (ICA), and low-risk patients without ICA were included. A stress-rest standard-dose (10/30 mCi) MPI and a low-dose (5/15 mCi) MPI were compared. Normal limits for quantification were developed from 40 (20 males) low-risk patients, and total perfusion deficit (TPD) was derived.

Results

208 patients who underwent MPI and ICA, and 76 low-risk patients were included. Of these, 128 had a standard-dose MPI and 156 had a low-dose MPI. Stress-doses in low-dose and standard-dose groups were 5.9 ± 1.2 vs 10.2 ± 0.5 mCi (1.7 ± 0.3 vs 3.0 ± 0.1 mSv), respectively, P < 0.001, and stress-rest effective radiation was 6.9 ± 1.1 vs 11.7 ± 0.4 mSv, respectively, P < 0.001. Sensitivity, specificity, and accuracy values in the low-dose and standard-dose groups were 86.1%, 76.6%, and 81.4%; and 90.6%, 78.1%, and 84.4%, respectively, P = ns. Using TPD prone, specificity values were 84.9% and 80.3%, respectively, P = ns.

Conclusion

One-day stress-first MPI with 50% radiation reduction and a very low stress-dose (<2 mSv) using CZT technology and quantitative supine and prone analysis provided a high diagnostic value, similar to standard-dose MPI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cerqueira MD, Allman KC, Ficaro EP, Hansen CL, Nichols KJ, Thompson RC, et al. Recommendations for reducing radiation exposure in myocardial perfusion imaging. J Nucl Cardiol. 2010;17:709-18.

    Article  PubMed  Google Scholar 

  2. Sharir T, Ben-Haim S, Merzon K, Prochorov V, Dickman D, Ben-Haim S, et al. High-speed myocardial perfusion imaging initial clinical comparison with conventional dual detector anger camera imaging. JACC Cardiovasc Imaging. 2008;1:156-63.

    Article  PubMed  Google Scholar 

  3. Esteves FP, Raggi P, Folks RD, Keidar Z, Askew JW, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: Multicenter comparison with standard dual detector cameras. J Nucl Cardiol. 2009;16:927-34.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Sharir T, Slomka PJ, Hayes SW, DiCarli MF, Ziffer JA, Martin WH, et al. Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging: Quantitative results of myocardial perfusion and left ventricular function. J Am Coll Cardiol. 2010;4:1965-74.

    Article  Google Scholar 

  5. Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med. 2009;50:635-43.

    Article  PubMed  Google Scholar 

  6. Slomka PJ, Patton JA, Berman DS, Germano G. Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol. 2009;16:255-76.

    Article  PubMed  Google Scholar 

  7. Sharir T, Slomka PJ, Berman ds. Solid-State SPECT technology: Fast and furious. J Nucl Cardiol. 2010;17:890-6.

    Article  PubMed  Google Scholar 

  8. Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: New designs and clinical implications. J Nucl Med. 2011;52:210-7.

    Article  PubMed  Google Scholar 

  9. Duvall WL, Croft LB, Ginsberg ES, Einstein AJ, Guma KA, George T, et al. Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera. J Nucl Cardiol. 2011;18:847-57.

    Article  PubMed  Google Scholar 

  10. Fiechter M, Ghadri JR, Kuest SM, Pazhenkottil AP, Wolfrum M, Nkoulou RN, et al. Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: First validation versus invasive coronary angiography. Eur J Nucl Med Mol Imaging. 2011;38:2025-30.

    Article  CAS  PubMed  Google Scholar 

  11. Neill J, Prvulovich EM, Fish MB, Berman DS, Slomka PJ, Sharir T, et al. Initial multicentre experience of high-speed myocardial perfusion imaging: Comparison between high-speed and conventional single-photon emission computed tomography with angiographic validation. Eur J Nucl Med Mol Imaging. 2013;40:1084-94.

    Article  CAS  PubMed  Google Scholar 

  12. Duvall WL, Sweeny JM, Croft LB, Ginsberg E, Guma KA, Henzlova MJ. Reduced stress dose with rapid acquisition CZT SPECT MPI in a non-obese clinical population: comparison to coronary angiography. J Nucl Cardiol. 2012;19:19-27.

    Article  PubMed  Google Scholar 

  13. Duvall WL, Slomka PJ, Gerlach JR, Sweeny JM, Baber U, Croft LB, et al. High-efficiency SPECT MPI: Comparison of automated quantification, visual interpretation, and coronary angiography. J Nucl Cardiol. 2013;20:763-73.

    Article  PubMed  Google Scholar 

  14. Esteves FP, Galt JR, Folks RD, Verdes L, Garcia EV. Diagnostic performance of low-dose rest/stress Tc-99 m tetrofosmin myocardial perfusion SPECT using the 530c CZT camera: quantitative vs visual analysis. J Nucl Cardiol. 2014;21:158-65.

    Article  PubMed  Google Scholar 

  15. Gimelli A, Bottai M, Quaranta A, Giorgetti A, Genovesi D, Marzullo P. Gender differences in the evaluation of coronary artery disease with a cadmium-zinc telluride camera. Eur J Nucl Med Mol Imaging. 2013;40:1542-8.

    Article  CAS  PubMed  Google Scholar 

  16. Ananthasubramaniam K, Bhatti S. Stress first myocardial perfusion imaging: Is it time to put to rest the “Rest First” strategy for most patients? J Nucl Cardiol. 2012;19:1106-9.

    Article  PubMed  Google Scholar 

  17. Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB Sr, Gibbons R, et al. American College of Cardiology, American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2935-59.

    Article  PubMed  Google Scholar 

  18. Slomka PJ, Nishina H, Berman DS, Kang X, Friedman JD, Hayes SW, et al. Automatic quantification of myocardial perfusion stress-rest change: A new measure of ischemia. J Nucl Med. 2004;45:183-91.

    PubMed  Google Scholar 

  19. Slomka PJ, Nishina H, Berman DS, Akincioglu C, Abidov A, Friedman JD, et al. Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol. 2005;12:66-77.

    Article  PubMed  Google Scholar 

  20. Arsanjani R, Xu Y, Hayes SW, Fish M, Lemley M Jr, Gerlach J, Dorbala S, Berman DS, Germano G, Slomka P. Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population. J Nucl Med. 2013;54:221-8.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation. 2007;116:1290-305.

    Article  PubMed  Google Scholar 

  22. ICRP. ICRP Publiction 103. The 2007 recommendations of the international commission on radiological protection. Ann ICRP. 2007;37:2007.

    Google Scholar 

  23. Johansen A, Høilund-Carlsen PF, Christensen HW, Vach W, Jørgensen HB, Veje A, et al. Diagnostic accuracy of myocardial perfusion imaging in a study population without post-test referral bias. J Nucl Cardiol. 2005;12:530-7.

    Article  PubMed  Google Scholar 

  24. Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus standard stress/rest myocardial perfusion imaging: Similar patient mortality with reduced radiation exposure. J Am Coll Cardiol. 2010;55:221-30.

    Article  PubMed  Google Scholar 

  25. Duvall WL, Wijetunga MN, Klein TM, Razzouk L, Godbold J, Croft LB, Henzlova MJ, et al. The prognosis of a normal stress-only Tc-99 m myocardial perfusion imaging study. J Nucl Cardiol. 2010;17:370-7.

    Article  PubMed  Google Scholar 

  26. Gowd BM, Heller GV, Parker MW. Stress-only SPECT myocardial perfusion imaging: a review. J Nucl Cardiol. 2014;21:1200-12.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Tali Sharir, Marina Pinskiy, Arik Rochman, Abraham Pardes, Vitali Prokhorov, Boris Brodkin have no conflict of interest. Gil Kovalski is employed by GE Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tali Sharir MD.

Additional information

See related editorial, doi:10.1007/s12350-015-0169-5.

All editorial decisions for this article, including selection of reviewers and the final decision, were made by guest editor Daniel Berman, MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharir, T., Pinskiy, M., Pardes, A. et al. Comparison of the diagnostic accuracies of very low stress-dose with standard-dose myocardial perfusion imaging: Automated quantification of one-day, stress-first SPECT using a CZT camera. J. Nucl. Cardiol. 23, 11–20 (2016). https://doi.org/10.1007/s12350-015-0130-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-015-0130-7

Keywords

Navigation