Skip to main content
Log in

High-efficiency SPECT MPI: Comparison of automated quantification, visual interpretation, and coronary angiography

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Recently introduced high-efficiency (HE) SPECT cameras with solid-state CZT detectors have been shown to decrease imaging time and reduce radiation exposure to patients. An automated, computer-derived quantification of HE MPI has been shown to correlate well with coronary angiography on one HE SPECT camera system (D-SPECT), but has not been compared to visual interpretation on any of the HE SPECT platforms.

Methods

Patients undergoing a clinically indicated Tc-99m sestamibi HE SPECT (GE Discovery 530c with supine and prone imaging) study over a 1-year period followed by a coronary angiogram within 2 months were included. Only patients with a history of CABG surgery were excluded. Both MPI studies and coronary angiograms were reinterpreted by blinded readers. One hundred and twenty two very low (risk of CAD < 5%) or low (risk of CAD < 10%) likelihood subjects with normal myocardial perfusion were used to create normal reference limits. Computer-derived quantification of the total perfusion deficit at stress and rest was obtained with QPS software. The visual and automated MPI quantification were compared to coronary angiography (≥70% luminal stenosis) by receiver operating curve (ROC) analysis.

Results

Of the 3,111 patients who underwent HE SPECT over a 1-year period, 160 patients qualified for the correlation study (66% male, 52% with a history of CAD). The ROC area under the curve (AUC) was similar for both the automated and the visual interpretations using both supine only and combined supine and prone images (0.69-0.74). Using thresholds determined from sensitivity and specificity curves, the automated reads showed higher specificity (59%-67% vs 27%-60%) and lower sensitivity (71%-72% vs 79%-93%) than the visual reads. By including prone images sensitivity decreased slightly but specificity increased for both. By excluding patients with known CAD and cardiomyopathies, AUC and specificity increased for both techniques (0.72-0.82). The use of a difference score to evaluate ischemic burden resulted in lower sensitivities but higher specificities for both automated and visual quantification. There was good agreement between the visual interpretation and automated quantification in the entire cohort of 160 unselected consecutive patients (r = 0.70-0.81, P < .0001).

Conclusions

Automated and visual quantification of high-efficiency SPECT MPI with the GE Discovery camera provides similar overall diagnostic accuracy when compared to coronary angiography. There was good correlation between the two methods of assessment. Combined supine and prone stress imaging provided the best diagnostic accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: New designs and clinical implications. J Nucl Med 2011;52:210-7.

    Article  PubMed  Google Scholar 

  2. Slomka PJ, Nishina H, Berman DS, Akincioglu C, Abidov A, Friedman JD, et al. Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol 2005;12:66-77.

    Article  PubMed  Google Scholar 

  3. Xu Y, Hayes S, Ali I, Ruddy TD, Wells RG, Berman DS, et al. Automatic and visual reproducibility of perfusion and function measures for myocardial perfusion SPECT. J Nucl Cardiol 2010;17:1050-7.

    Article  PubMed  Google Scholar 

  4. Slomka PJ, Nishina H, Abidov A, Hayes SW, Friedman JD, Berman DS, et al. Combined quantitative supine-prone myocardial perfusion SPECT improves detection of coronary artery disease and normalcy rates in women. J Nucl Cardiol 2007;14:44-52.

    Article  PubMed  Google Scholar 

  5. Nakazato R, Tamarappoo BK, Kang X, Wolak A, Kite F, Hayes SW, et al. Quantitative upright-supine high-speed SPECT myocardial perfusion imaging for detection of coronary artery disease: Correlation with invasive coronary angiography. J Nucl Med 2010;51:1724-31.

    Article  PubMed  Google Scholar 

  6. Nishina H, Slomka PJ, Abidov A, Yoda S, Akincioglu C, Kang X, et al. Combined supine and prone quantitative myocardial perfusion SPECT: Method development and clinical validation in patients with no known coronary artery disease. J Nucl Med 2006;47:51-8.

    PubMed  Google Scholar 

  7. Slomka PJ, Fish MB, Lorenzo S, Nishina H, Gerlach J, Berman DS, et al. Simplified normal limits and automated quantitative assessment for attenuation-corrected myocardial perfusion SPECT. J Nucl Cardiol 2006;13:642-51.

    Article  PubMed  Google Scholar 

  8. Xu Y, Fish M, Gerlach J, Lemley M, Berman DS, Germano G, et al. Combined quantitative analysis of attenuation corrected and non-corrected myocardial perfusion SPECT: Method development and clinical validation. J Nucl Cardiol 2010;17:591-9.

    Article  PubMed  Google Scholar 

  9. Xu Y, Nakazato R, Hayes S, Hachamovitch R, Cheng VY, Gransar H, et al. Prognostic value of automated vs visual analysis for adenosine stress myocardial perfusion SPECT in patients without prior coronary artery disease: A case-control study. J Nucl Cardiol 2011;18:1003-9.

    Article  PubMed  Google Scholar 

  10. Slomka PJ, Patton JA, Berman DS, Germano G. Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol 2009;16:255-76.

    Article  PubMed  Google Scholar 

  11. Sharir T, Ben-Haim S, Merzon K, Prochorov V, Dickman D, Berman DS. High-speed myocardial perfusion imaging initial clinical comparison with conventional dual detector anger camera imaging. JACC Cardiovasc Imaging 2008;1:156-63.

    Article  PubMed  Google Scholar 

  12. Sharir T, Slomka PJ, Hayes SW, DiCarli MF, Ziffer JA, Martin WH, et al. Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging: Quantitative results of myocardial perfusion and left ventricular function. J Am Coll Cardiol 2010;55:1965-74.

    Article  PubMed  Google Scholar 

  13. Esteves FP, Raggi P, Folks RD, Keidar Z, Askew JW, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: Multicenter comparison with standard dual detector cameras. J Nucl Cardiol 2009;16:927-34.

    Article  PubMed  Google Scholar 

  14. Buechel RR, Herzog BA, Husmann L, Burger IA, Pazhenkottil AP, Treyer V, et al. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: First clinical validation. Eur J Nucl Med Mol Imaging 2010;37:773-8.

    Article  PubMed  Google Scholar 

  15. Herzog BA, Buechel RR, Katz R, Brueckner M, Husmann L, Burger IA, et al. Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: Optimized protocol for scan time reduction. J Nucl Med 2010;51:46-51.

    Article  PubMed  Google Scholar 

  16. Gimelli A, Bottai M, Giorgetti A, Genovesi D, Kusch A, Ripoli A, et al. Comparison between ultrafast and standard single-photon emission CT in patients with coronary artery disease: A pilot study. Circ Cardiovasc Imaging 2011;4:51-8.

    Article  PubMed  Google Scholar 

  17. Songy B, Lussato D, Guernou M, Queneau M, Geronazzo R. Comparison of myocardial perfusion imaging using thallium-201 between a new cadmium-zinc-telluride cardiac camera and a conventional SPECT camera. Clin Nucl Med 2011;36:776-80.

    Article  PubMed  Google Scholar 

  18. Duvall WL, Croft LB, Godiwala T, Ginsberg E, George T, Henzlova MJ. Reduced isotope dose with rapid SPECT MPI imaging: Initial experience with a CZT SPECT camera. J Nucl Cardiol 2010;17:1009-14.

    Article  PubMed  Google Scholar 

  19. Duvall WL, Croft LB, Ginsberg ES, Einstein AJ, Guma KA, George T, et al. Reduced isotope dose and imaging time with a high efficiency CZT SPECT camera. J Nucl Cardiol 2011;18:847-57.

    Article  PubMed  Google Scholar 

  20. Nkoulou R, Pazhenkottil AP, Kuest SM, Ghadri JR, Wolfrum M, Husmann L, et al. Semiconductor detectors allow low-dose-low-dose 1-day SPECT myocardial perfusion imaging. J Nucl Med 2011;52:1204-9.

    Article  PubMed  Google Scholar 

  21. Duvall WL, Sweeny JM, Croft LB, Barghash MH, Kulkarni NK, Guma KA, et al. Comparison of high efficiency CZT SPECT MPI to coronary angiography. J Nucl Cardiol 2011;18:595-604.

    Article  PubMed  Google Scholar 

  22. Fiechter M, Ghadri JR, Kuest SM, Pazhenkottil AP, Wolfrum M, Nkoulou RN, et al. Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: First validation versus invasive coronary angiography. Eur J Nucl Med Mol Imaging 2011;38:2025-30.

    Article  PubMed  CAS  Google Scholar 

  23. Gimelli A, Bottai M, Genovesi D, Giorgetti A, Di Martino F, Marzullo P. High diagnostic accuracy of low-dose gated-SPECT with solid-state ultrafast detectors: Preliminary clinical results. Eur J Nucl Med Mol Imaging 2011;39:83-90.

    Article  PubMed  Google Scholar 

  24. Duvall WL, Sweeny JM, Croft LB, Ginsberg E, Guma KA, Henzlova MJ. Reduced stress dose with rapid acquisition CZT SPECT MPI in a non-obese clinical population: Comparison to coronary angiography. J Nucl Cardiol 2011;19:19-27.

    Article  PubMed  Google Scholar 

  25. Hansen CL, Goldstein RA, Berman DS, Churchwell KB, Cooke CD, Corbett JR, et al. Myocardial perfusion and function single photon emission computed tomography. J Nucl Cardiol 2006;13:e97-120.

    Article  PubMed  Google Scholar 

  26. Henzlova MJ, Cerqueira MD, Hansen CL, Taillefer R, Yao SS. ASNC imaging guidelines for nuclear cardiology procedures: Stress protocols and tracers. J Nucl Cardiol 2009;16:331.

    Article  Google Scholar 

  27. Henzlova MJ, Cerqueira MD, Mahmarian JJ, Yao SS. Stress protocols and tracers. J Nucl Cardiol 2006;13:e80-90.

    Article  PubMed  Google Scholar 

  28. Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. Circulation 2009;119:e561-87.

    Article  PubMed  Google Scholar 

  29. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. J Nucl Cardiol 2002;9:240-5.

    Article  PubMed  Google Scholar 

  30. Duvall WL, Sweeny JM, Croft LB, Ginsberg E, Guma KA, Henzlova MJ. Reduced stress dose with rapid acquisition CZT SPECT MPI in a non-obese clinical population: Comparison to coronary angiography. J Nucl Cardiol 2012;19:19-27.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by Grant R0HL089765-05 from the National Heart, Lung, and Blood Institute/National Institutes of Health (NHLBI/NIH). Cedars-Sinai Medical Center receives royalties for the licensure of quantitative perfusion software, a portion of which is distributed to one of the authors (PS) of this manuscript.

Addendum

The patients analyzed in this study were also included in an earlier study which correlated CZT SPECT MPI to coronary angiography irrespective of tracer (Tc-99m or Tl-201).21

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Lane Duvall MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duvall, W.L., Slomka, P.J., Gerlach, J.R. et al. High-efficiency SPECT MPI: Comparison of automated quantification, visual interpretation, and coronary angiography. J. Nucl. Cardiol. 20, 763–773 (2013). https://doi.org/10.1007/s12350-013-9735-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-013-9735-x

Keywords

Navigation