Skip to main content
Log in

Cardiac autonomic innervation

  • CME ARTICLE Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

The autonomic nervous system plays a key role in regulating changes in the cardiovascular system and its adaptation to various human body functions. The sympathetic arm of the autonomic nervous system is associated with the fight and flight response, while the parasympathetic division is responsible for the restorative effects on heart rate, blood pressure, and contractility. Disorders involving these two divisions can lead to, and are seen as, a manifestation of most common cardiovascular disorders. Over the last few decades, extensive research has been performed establishing imaging techniques to quantify the autonomic dysfunction associated with various cardiovascular disorders. Additionally, several techniques have been tested with variable success in modulating the cardiac autonomic nervous system as treatment for these disorders. In this review, we summarize basic anatomy, physiology, and pathophysiology of the cardiac autonomic nervous system including adrenergic receptors. We have also discussed several imaging modalities available to aid in diagnosis of cardiac autonomic dysfunction and autonomic modulation techniques, including pharmacologic and device-based therapies, that have been or are being tested currently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

NTS:

Nucleus tractus solitarius

IML:

Intermediolateral nucleus

RVLM:

Rostral ventrolateral medulla

CVLM:

Caudal ventrolateral medulla

NA:

Nucleus ambiguous

DMV:

Dorsal motor nucleus of vagus

123I-MIBG:

123I-metaiodobenzylguanidine

H/M ratio:

Heart-mediastinum ratio

VNS:

Vagus nerve stimulation

SCS:

Spinal cord stimulation

References

  1. Palma JA, Benarroch EE. Neural control of the heart: recent concepts and clinical correlations. Neurology. 2014;83(3):261–71.

    Article  PubMed  Google Scholar 

  2. Ciriello J, Calaresu FR. Medullary origin of vagal preganglionic axons to the heart of the cat. J Auton Nerv Syst. 1982;5(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  3. Dae MW, O’Connell JW, Botvinick EH, Ahearn T, Yee E, Huberty JP, et al. Scintigraphic assessment of regional cardiac adrenergic innervation. Circulation. 1989;79:634–44.

    Article  CAS  PubMed  Google Scholar 

  4. Cravo SL, Morrison SF. The caudal ventrolateral medulla is a source of tonic sympathoinhibition. Brain Res. 1993;621(1):133–6.

    Article  CAS  PubMed  Google Scholar 

  5. Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec. 1997;247(2):289–98.

    Article  CAS  PubMed  Google Scholar 

  6. Janes RD, Brandys JC, Hopkins DA, Johnstone DE, Murphy DA, Armour JA. Anatomy of human extrinsic cardiac nerves and ganglia. Am J Cardiol. 1986;57(4):299–309.

    Article  CAS  PubMed  Google Scholar 

  7. Woodman OL, Vatner SF. Cardiovascular responses to the stimulation of alpha-1 and alpha-2 adrenoceptors in the conscious dog. J Pharmacol Exp Ther. 1986;237(1):86–91.

    CAS  PubMed  Google Scholar 

  8. Hirono O, Kubota I, Minamihaba O, Fatema K, Kato S, Nakamura H, et al. Left ventricular diastolic dysfunction in patients with bronchial asthma with long-term oral beta2-adrenoceptor agonists. Am Heart J. 2001;142(6):E11.

    Article  CAS  PubMed  Google Scholar 

  9. Lowe MD, Rowland E, Brown MJ, Grace AA. Beta(2) adrenergic receptors mediate important electrophysiological effects in human ventricular myocardium. Heart. 2001;86(1):45–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Young MA, Vatner DE, Vatner SF. Alpha- and beta-adrenergic control of large coronary arteries in conscious calves. Basic Res Cardiol. 1990;85(Suppl 1):97–109.

    PubMed  Google Scholar 

  11. Chilian WM. Functional distribution of alpha 1- and alpha 2-adrenergic receptors in the coronary microcirculation. Circulation. 1991;84(5):2108–22.

    Article  CAS  PubMed  Google Scholar 

  12. Wang GY, McCloskey DT, Turcato S, Swigart PM, Simpson PC, Baker AJ. Contrasting inotropic responses to alpha1-adrenergic receptor stimulation in left versus right ventricular myocardium. Am J Physiol Heart Circ Physiol. 2006;291(4):H2013–7.

    Article  CAS  PubMed  Google Scholar 

  13. Vatner SF, Higgins CB, Braunwald E. Effects of norepinephrine on coronary circulation and left ventricular dynamics in the conscious dog. Circ Res. 1974;34:812–23.

    Article  CAS  PubMed  Google Scholar 

  14. Orlick AE, Ricci DR, Alderman EL, Stinson EB, Harrison DC. Effects of alpha adrenergic blockade upon coronary hemodynamics. J Clin Invest. 1978;62:459–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bristow MR, Hershberger RE, Port JD, Minobe W, Rasmussen R. Beta 1- and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol Pharmacol. 1989;35(3):295–303.

    CAS  PubMed  Google Scholar 

  16. Ng GA, Brack KE, Patel VH, Coote JH. Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart. Cardiovasc Res. 2007;73(4):750–60.

    Article  CAS  PubMed  Google Scholar 

  17. Ng GA, Mantravadi R, Walker WH, Ortin WG, Choi BR, de Groat W, et al. Sympathetic nerve stimulation produces spatial heterogeneities of action potential restitution. Heart rhythm. 2009;6:696–706.

    Article  PubMed  Google Scholar 

  18. Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H. Functional beta3-adrenoceptor in the human heart. J Clin Invest. 1996;98(2):556–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gauthier C, Leblais V, Kobzik L, Trochu JN, Khandoudi N, Bril A, et al. The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest. 1998;102(7):1377–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wagoner LE, Craft LL, Singh B, Suresh DP, Zengel PW, McGuire N, Abraham WT, et al. Polymorphisms of the beta(2)-adrenergic receptor determine exercise capacity in patients with heart failure. Circ Res. 2000;86(8):834–40.

    Article  CAS  PubMed  Google Scholar 

  21. Small KM, Wagoner LE, Levin AM, Kardia SL, Liggett SB. Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med. 2002;347(15):1135–42.

    Article  CAS  PubMed  Google Scholar 

  22. Ma ST, Zhao W, Liu B, Jia RY, Zhao CJ, Cui LQ. Association between β1 adrenergic receptor gene Arg389Gly polymorphism and risk of heart failure: a meta-analysis. Genet Mol Res. 2015;14(2):5922–9.

    Article  CAS  PubMed  Google Scholar 

  23. Reddy S, Fung A, Manlhiot C, Tierney ES, Chung WK, Blume E, et al. Adrenergic receptor genotype influences heart failure severity and β-blocker response in children with dilated cardiomyopathy. Pediatr Res. 2015;77(2):363–9.

    Article  CAS  PubMed  Google Scholar 

  24. Hainsworth R. Cardiovascular control from cardiac and pulmonary vascular receptors. Exp Physiol. 2014;99(2):312–9.

    Article  PubMed  Google Scholar 

  25. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114:1004–21.

    Article  CAS  PubMed  Google Scholar 

  26. Verrier RL, Josephson ME. Impact of sleep on arrhythmogenesis. Circ Arrhythm Electrophysiol. 2009;2(4):450–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eckberg DL. Point:counterpoint: respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism. J Appl Physiol. 2009;106(5):1740–2.

    Article  PubMed  Google Scholar 

  28. Dampney RA, Horiuchi J. Functional organisation of central cardiovascular pathways: studies using c-fos gene expression. Prog Neurobiol. 2003;71(5):359–84.

    Article  CAS  PubMed  Google Scholar 

  29. Mark AL. The Bezold-Jarisch reflex revisited: clinical implications of inhibitory reflexes originating in the heart. J Am Coll Cardiol. 1983;1(1):90–102.

    Article  CAS  PubMed  Google Scholar 

  30. Meller ST, Gebhart GF. A critical review of the afferent pathways and the potential chemical mediators involved in cardiac pain. Neuroscience. 1992;48(3):501–24.

    Article  CAS  PubMed  Google Scholar 

  31. Malliani A, Schwartz PJ, Zanchetti A. A sympathetic reflex elicited by experimental coronary occlusion. Am J Physiol. 1969;217(3):703–9.

    CAS  PubMed  Google Scholar 

  32. Lahiri MK, Kannankeril PJ, Goldberger JJ. Assessment of autonomic function in cardiovascular disease: physiological basis and prognostic implications. J Am Coll Cardiol. 2008;51(18):1725–33.

    Article  PubMed  Google Scholar 

  33. Travin MI. Clinical applications of myocardial innervation imaging. Cardiol Clin. 2016;34:133–47.

    Article  PubMed  Google Scholar 

  34. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. ADMIRE-HF investigators. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55:2212–21.

    Article  PubMed  Google Scholar 

  35. Dae MW, O’Connell JW, Botvinick E, Chin MC. Acute and chronic effects of transient myocardial ischemia on sympathetic nerve activity, density, and norepinephrine content. Cardiovasc Res. 1995;30:270–80.

    Article  CAS  PubMed  Google Scholar 

  36. Matsunari I, Aoki H, Nomura Y, Takeda N, Chen WP, Taki J, et al. Iodine-123 metaiodobenzylguanidine imaging and carbon-11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction. Circ Cardiovasc Imaging. 2010;3(5):595–603.

    Article  PubMed  Google Scholar 

  37. Schwaiger M, Kalff V, Rosenspire K, Haka MS, Molina E, Hutchins GD, et al. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation. 1990;82(2):457–64.

    Article  CAS  PubMed  Google Scholar 

  38. Riemann B, Schäfers M, Law MP, Wichter T, Schober O. Radioligands for imaging myocardial alpha- and beta-adrenoceptors. Nuklearmedizin. 2003;42(1):4–9.

    CAS  PubMed  Google Scholar 

  39. Naya M, Tsukamoto T, Morita K, Katoh C, Nishijima K, Komatsu H, et al. Myocardial beta-adrenergic receptor density assessed by 11C-CGP12177 PET predicts improvement of cardiac function after carvedilol treatment in patients with idiopathic dilated cardiomyopathy. J Nucl Med. 2009;50(2):220–5.

    Article  CAS  PubMed  Google Scholar 

  40. de Jong RM, Willemsen AT, Slart RH, Blanksma PK, van Waarde A, Cornel JH, et al. Myocardial beta-adrenoceptor downregulation in idiopathic dilated cardiomyopathy measured in vivo with PET using the new radioligand (S)-[11C]CGP12388. Eur J Nucl Med Mol Imaging. 2005;32(4):443–7.

    Article  PubMed  CAS  Google Scholar 

  41. Yu M, Bozek J, Lamoy M, Guaraldi M, Silva P, Kagan M, et al. Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ Cardiovasc Imaging. 2011;4(4):435–43.

    Article  PubMed  Google Scholar 

  42. Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature. 2012;482:547–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. LeGuludec D, Delforge J, Dolle F. Imaging parasympathetic cardiac innervation with PET. In: Slart RHJA, Tio RA, Elsinga PH, Schwaiger M, editors. Autonomic innervation of the heart. Berlin: Springer-Verlag; 2015. p. 111–35.

    Google Scholar 

  44. Gjerløff T, Jakobsen S, Nahimi A, Munk OL, Bender D, Alstrup AKO, et al. In vivo imaging of human acetylcholinesterase density in peripheral organs using 11C-donepezil: dosimetry, biodistribution, and kinetic analyses. J Nucl Med. 2014;55(11):1818–24.

    Article  PubMed  CAS  Google Scholar 

  45. Thomas J, Marks B. Plasma norepinephrine in congestive heart failure. Am J Cardiol. 1978;41:233–43.

    Article  CAS  PubMed  Google Scholar 

  46. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.

    Article  CAS  PubMed  Google Scholar 

  47. Ewing DJ, Martyn CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care. 1985;8:491–8.

    Article  CAS  PubMed  Google Scholar 

  48. Patel HC, Rosen SD, Lindsay A, Hayward C, Lyon AR, di Mario C. Targeting the autonomic nervous system: measuring autonomic function and novel devices for heart failure management. Int J Cardiol. 2013;170(2):107–17.

    Article  PubMed  Google Scholar 

  49. Cygankiewicz I, Zareba W, Vazquez R, Vallverdu M, Gonzalez-Juanatey JR, Valdes M, et al. Muerte subita en insuficiencia cardiaca investigators. Heart rate turbulence predicts all-cause mortality and sudden death in congestive heart failure patients. Heart Rhythm. 2008;5(8):1095–102.

    Article  PubMed  Google Scholar 

  50. La Rovere M, Pinna G, Raczak G. Baroreflex sensitivity: measurement and clinical implications. Ann Noninvasive Electrocardiol. 2008;13:191–207.

    Article  PubMed  Google Scholar 

  51. La Rovere MT, Pinna GD, Maestri R, Robbi E, Caporotondi A, Guazzotti G, et al. Prognostic implication of baroreflex sensitivity in heart failure patients in the beta-blocking era. J Am Coll Cardiol. 2009;53:193–9.

    Article  PubMed  Google Scholar 

  52. Carrió I, Cowie MR, Yamazaki J, Udelson J, Camici PG. Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging. 2010;3(1):92–100.

    Article  PubMed  Google Scholar 

  53. Ungerer M, Böhm M, Elce JS, Erdmann E, Lohse MJ. Altered expression of beta-adrenergic receptor kinase and beta-1-adrenergic receptors in the failing human heart. Circulation. 1993;87(2):454–63.

    Article  CAS  PubMed  Google Scholar 

  54. Caldwell JH, Link JM, Levy WC, Poole JE, Stratton JR. Evidence for pre- to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure. J Nucl Med. 2008;49(2):234–41.

    Article  PubMed  Google Scholar 

  55. Lechat P, Packer M, Chalon S, Cucherat M, Arab T, Boiseel JP. Clinical effects of beta-adrenergic blockade in chronic heart failure: a meta-analysis of double-blind, placebo-controlled, randomized trials. Circulation. 1998;98:1184–91.

    Article  CAS  PubMed  Google Scholar 

  56. Grassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Pozzi M, Morganti A, et al. Effects of chronic ACE inhibition on sympathetic nerve traffic and baroreflex control of circulation in heart failure. Circulation. 1997;96(4):1173–9.

    Article  CAS  PubMed  Google Scholar 

  57. Aggarwal A, Esler MD, Morris MJ, Lambert G, Kaye DM. Regional sympathetic effects of low-dose clonidine in heart failure. Hypertension. 2003;41(3):553–7.

    Article  CAS  PubMed  Google Scholar 

  58. Moorman AJ, Stratton JR, Levy WC. Clonidine therapy in patients with heart failure improves exercise efficiency, functional class and symptoms. Int J Cardiol. 2011;150(3):372–3.

    Article  PubMed  Google Scholar 

  59. Cohn JN, Pfeffer MA, Rouleau J, Sharpe N, Swedberg K, Straub M, et al. MOXCON investigators. adverse mortality effect of central sympathetic inhibition with sustained-release moxonidine in patients with heart failure (MOXCON). Eur J Heart Fail. 2003;5:659–67.

    Article  CAS  PubMed  Google Scholar 

  60. Davies JE, Manisty CH, Petraco R, Barron AJ, Unsworth B, Mayet J, et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol. 2013;162(3):189–92.

    Article  PubMed  Google Scholar 

  61. Taborsky M, Lazarova ML, Vaclavik J. The effect of renal denervation in patients with advanced heart failure. Eur Heart J. 2012;33:517 [Abstract Supplement].

    Google Scholar 

  62. Sobotka P, Krum H, Bohm M, Francis D, Schlaich M. The role of renal denervation in the treatment of heart failure. Curr Cardiol Rep. 2012;14:285–92.

    Article  PubMed  Google Scholar 

  63. Renal Artery Denervation in Chronic Heart Failure Study (REACH). http://clinicaltrials.gov/show/NCT01639378. Accessed October 12 2016.

  64. Gold MR, Van Veldhuisen DJ, Hauptman PJ, Borggrefe M, Kubo SH, Lieberman RA, et al. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J Am Coll Cardiol. 2016;68(2):149–58.

    Article  PubMed  Google Scholar 

  65. Zannad F, De Ferrari GM, Tuinenburg AE, Wright D, Brugada J, Butter C, et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J. 2015;36(7):425–33.

    Article  PubMed  Google Scholar 

  66. Lopshire JC, Zhou X, Dusa C, Ueyama T, Rosenberger J, Courtney N, et al. Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model. Circulation. 2009;120:286–94.

    Article  PubMed  Google Scholar 

  67. Mierzewska-Schmidt M, Gawecka A. Neurogenic stunned myocardium—do we consider this diagnosis in patients with acute central nervous system injury and acute heart failure? Anaesthesiol Intensive Ther. 2015;47(2):175–80.

    Article  PubMed  Google Scholar 

  68. Bahloul M, Chaari AN, Kallel H, Khabir A, Ayadi A, Charfeddine H, et al. Neurogenic pulmonary edema due to traumatic brain injury: evidence of cardiac dysfunction. Am J Crit Care. 2006;15(5):462–70.

    PubMed  Google Scholar 

  69. Bybee KA, Prasad A. Stress-related cardiomyopathy syndromes. Circulation. 2008;118(4):397–409.

    Article  PubMed  Google Scholar 

  70. Amar D, Zhang H, Miodownik S, Kadish AH. Competing autonomic mechanisms precede the onset of postoperative atrial fibrillation. J Am Coll Cardiol. 2003;42:1262–8.

    Article  PubMed  Google Scholar 

  71. Bettoni M, Zimmermann M. Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation. 2002;105:2753–9.

    Article  PubMed  Google Scholar 

  72. Tomita T, Takei M, Saikawa Y, Hanaoka T, Uchikawa S, Tsutsui H, et al. Role of autonomic tone in the initiation and termination of paroxysmal atrial fibrillation in patients without structural heart disease. J Cardiovasc Electrophysiol. 2003;14:559–64.

    Article  PubMed  Google Scholar 

  73. Linz D, Mahfoud F, Schotten U, Ukena C, Neuberger HR, Wirth K, et al. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension. 2012;60(1):172–8.

    Article  CAS  PubMed  Google Scholar 

  74. Linz D, Schotten U, Neuberger HR, Böhm M, Wirth K. Combined blockade of early and late activated atrial potassium currents suppresses atrial fibrillation in a pig model of obstructive apnea. Heart Rhythm. 2011;8:1933–9.

    Article  PubMed  Google Scholar 

  75. Linz D, Mahfoud F, Schotten U, Ukena C, Hohl M, Neuberger HR, et al. Renal sympathetic denervation provides ventricular rate control but does not prevent atrial electrical remodeling during atrial fibrillation. Hypertension. 2013;61:225–31.

    Article  CAS  PubMed  Google Scholar 

  76. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Baranova V, Turov A, et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol. 2012;60:1163–70.

    Article  PubMed  Google Scholar 

  77. Lomuscio A, Belletti S, Battezzati PM, Lombardi F. Efficacy of acupuncture in preventing atrial fibrillation recurrences after electrical cardioversion. J Cardiovasc Electrophysiol. 2011;22:241–7.

    Article  PubMed  Google Scholar 

  78. Lombardi F, Belletti S, Battezzati PM, Lomuscio A. Acupuncture for paroxysmal and persistent atrial fibrillation: an effective non-pharmacological tool? World J Cardiol. 2012;4:60–5.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Li S, Scherlag BJ, Yu L, Sheng X, Zhang Y, Ali R, et al. Low-level vagosympathetic stimulation: a paradox and potential new modality for the treatment of focal atrial fibrillation. Circ Arrhythm Electrophysiol. 2009;2:645–51.

    Article  PubMed  Google Scholar 

  80. Yu L, Scherlag BJ, Li S, Sheng X, Lu Z, Nakagawa H, et al. Low-level vagosympathetic nerve stimulation inhibits atrial fibrillation inducibility: direct evidence by neural recordings from intrinsic cardiac ganglia. J Cardiovasc Electrophysiol. 2011;22:455–63.

    Article  PubMed  Google Scholar 

  81. Viskin S, Golovner M, Malov N, Fish R, Alroy I, Vila Y, et al. Circadian variation of symptomatic paroxysmal atrial fibrillation. Data from almost 10000 episodes. Eur Heart J. 1999;20:1429–34.

    Article  CAS  PubMed  Google Scholar 

  82. Olgin JE, Takahashi T, Wilson E, Vereckei A, Steinberg H, Zipes DP. Effects of thoracic spinal cord stimulation on cardiac autonomic regulation of the sinus and atrioventricular nodes. J Cardiovasc Electrophysiol. 2002;13:475–81.

    Article  PubMed  Google Scholar 

  83. Bernstein SA, Wong B, Vasquez C, Rosenberg SP, Rooke R, Kuznekoff LM, et al. Spinal cord stimulation protects against atrial fibrillation induced by tachypacing. Heart Rhythm. 2012;9:1426–63.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lown B, Verrier R, Corbalan R. Psychologic stress and threshold for repetitive ventricular response. Science. 1973;182:834–6.

    Article  CAS  PubMed  Google Scholar 

  85. Zipes DP. Influence of myocardial ischemia and infarction on autonomic innervation of heart. Circulation. 1990;82(4):1095–105.

    Article  CAS  PubMed  Google Scholar 

  86. Chen LS, Zhou S, Fishbein MC, Chen PS. New perspectives on the role of autonomic nervous system in the genesis of arrhythmias. J Cardiovasc Electrophysiol. 2007;18:123–7.

    Article  PubMed  Google Scholar 

  87. Inoue H, Zipes DP. Results of sympathetic denervation in the canine heart: supersensitivity that may be arrhythmogenic. Circulation. 1987;75:877–87.

    Article  CAS  PubMed  Google Scholar 

  88. Cao J-M, Fishbein MC, Han JB, Lai WW, Lai AC, Hu T-J, et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000;101:1960–9.

    Article  CAS  PubMed  Google Scholar 

  89. Arora R, Ferrick KJ, Nakata T, Kaplan RC, Rozengarten M, Latif F, et al. I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol. 2003;10:121–31.

    Article  PubMed  Google Scholar 

  90. Schäfers M, Wichter T, Lerch H, Matheja P, Kuwert T, Schäfers K, et al. Cardiac 123I-MIBG uptake in idiopathic ventricular tachycardia and fibrillation. J Nucl Med. 1999;40(1):1–5.

    PubMed  Google Scholar 

  91. Gerson MC, McGuire N, Wagoner LE. Sympathetic nervous system function as measured by I-123 metabenzylguanidine predicts transplant-free survival in heart failure patients with idiopathic dilated cardiomyopathy. J Card Fail. 2003;9(5):384–91.

    Article  PubMed  Google Scholar 

  92. Bax JJ, Kraft O, Buxton AE, Fjeld JG, Parízek P, Agostini D, et al. 123I-mIBG scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: a prospective multicenter pilot study. Circ Cardiovasc Imaging. 2008;1:131–40.

    Article  PubMed  Google Scholar 

  93. Boogers MJ, Borleffs CJ, Henneman MM, van Bommel RJ, van Ramshorst J, Boersma E, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol. 2010;55(24):2769–77.

    Article  PubMed  Google Scholar 

  94. Kelesidis I, Travin MI. Use of cardiac radionuclide imaging to identify patients at risk for arrhythmic sudden cardiac death. J Nucl Med. 2012;19(1):142–52.

    Google Scholar 

  95. Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001;103:89–95.

    Article  CAS  PubMed  Google Scholar 

  96. Janse MJ, Schwartz PJ, Wilms-Schopman F, Peters RJ, Durrer D. Effects of unilateral stellate ganglion stimulation and ablation on electrophysiologic changes induced by acute myocardial ischemia in dogs. Circulation. 1985;72:585–95.

    Article  CAS  PubMed  Google Scholar 

  97. Cao J-M, Chen LS, KenKnight BH, Ohara T, Lee M-H, Tsai J, et al. Nerve sprouting and sudden cardiac death. Circ Res. 2000;86:816–21.

    Article  CAS  PubMed  Google Scholar 

  98. Steinbeck G, Andresen D, Bach P, Haberl R, Oeff M, Hoffmann E, et al. A comparison of electrophysiologically guided antiarrhythmic drug therapy with beta-blocker therapy in patients with symptomatic, sustained ventricular tachyarrhythmias. N Engl J Med. 1992;327:987–92.

    Article  CAS  PubMed  Google Scholar 

  99. Antz M, Cappato R, Kuck KH. Metoprolol versus sotalol in the treatment of sustained ventricular tachycardia. J Cardiovasc Pharmacol. 1995;26:627–35.

    Article  CAS  PubMed  Google Scholar 

  100. Wilde AA, Bhuiyan ZA, Crotti L, Facchini M, De Ferrari GM, Paul T. Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. N Engl J Med. 2008;358:2024–9.

    Article  CAS  PubMed  Google Scholar 

  101. Schwartz PJ. Cutting nerves and saving lives. Heart Rhythm. 2009;6:760–3.

    Article  PubMed  Google Scholar 

  102. Ajijola OA, Lellouche N, Bourke T, Tung R, Ahn S, Mahajan A, et al. Bilateral cardiac sympathetic denervation for the management of electrical storm. J Am Coll Cardiol. 2012;59:91–2.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Vaseghi M, Gima J, Kanaan C, Ajijola OA, Marmureanu A, Mahajan A, et al. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: intermediate and long-term follow-up. Heart Rhythm. 2014;11:360–6.

    Article  PubMed  Google Scholar 

  104. Chinushi M, Izumi D, Iijima K, Suzuki K, Furushima H, Saitoh O, et al. Blood pressure and autonomic responses to electrical stimulation of the renal arterial nerves before and after ablation of the renal artery. Hypertension. 2013;61:450–6.

    Article  CAS  PubMed  Google Scholar 

  105. Huang B, Yu L, Scherlag BJ, Wang S, He B, Yang K, et al. Left renal nerves stimulation facilitates ischemia-induced ventricular arrhythmia by increasing nerve activity of left stellate ganglion. J Cardiovasc Electrophysiol. 2014;25:1249–56.

    Article  PubMed  Google Scholar 

  106. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, et al. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61:457–64.

    Article  CAS  PubMed  Google Scholar 

  107. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof of principle cohort study. Lancet. 2009;373:1275–81.

    Article  PubMed  Google Scholar 

  108. Tsiousfis C, Papademetriou V, Tsiachris D, Dimitriadis K, Kasiakogias A, Kordalis A, et al. Drug-resistant hypertensive patients responding to multielectrode renal denervation exhibit improved heart rate dynamics and reduced arrhythmia burden. J Hum Hyperten. 2014;28:587–93.

    Article  CAS  Google Scholar 

  109. Kent KM, Smith ER, Redwood DR, Epstein SE. Electrical stability of acutely ischemic myocardium. influences of heart rate and vagal stimulation. Circulation. 1973;47:291–8.

    Article  CAS  PubMed  Google Scholar 

  110. Myers RW, Pearlman AS, Hyman RM, Goldstein RA, Kent KM, Goldstein RE, et al. Beneficial effects of vagal stimulation and bradycardia during experimental acute myocardial ischemia. Circulation. 1974;49:943–7.

    Article  CAS  PubMed  Google Scholar 

  111. Goldstein RE, Karsh RB, Smith ER, Orlando M, Norman D, Farnham G, et al. Infuence of atropine and of vagally mediated bradycardia on the occurrence of ventricular arrhythmias following acute coronary occlusion in closed-chest dogs. Circulation. 1973;47:1180–90.

    Article  CAS  PubMed  Google Scholar 

  112. Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS Jr, Foreman RD, Schwartz PJ. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res. 1991;68:1471–81.

    Article  CAS  PubMed  Google Scholar 

  113. Vanhoutte PM, Levy MN. Prejunctional cholinergic modulation of adrenergic neurotransmission in the cardiovascular system. Am J Physiol. 1980;238:H275–81.

    CAS  PubMed  Google Scholar 

  114. Takahashi N, Zipes DP. Vagal modulation of adrenergic effects on canine sinus and atrioventricular nodes. Am J Physiol. 1983;244:H775–81.

    CAS  PubMed  Google Scholar 

  115. Ng GA, Brack KE, Coote JH. Effects of direct sympathetic and vagus nerve stimulation on the physiology of the whole heart-a novel model of isolated Langendorff perfused rabbit heart with intact dual autonomic innervation. Exp Physiol. 2001;86:319–29.

    Article  CAS  PubMed  Google Scholar 

  116. Shinlapawittayatorn K, Chinda K, Palee S, Surinkaew S, Thunsiri K, Weerateerangkul P, et al. Low-amplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia-reperfusion injury. Heart Rhythm. 2013;10:1700–7.

    Article  PubMed  Google Scholar 

  117. Issa ZF, Zhou X, Ujhelyi MR, Rosenberger J, Bhakta D, Groh WJ, et al. Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmias in a postinfarction heart failure canine model. Circulation. 2005;111:3217–20.

    Article  PubMed  Google Scholar 

  118. Tse HF, Turner S, Sanders P, Okuyama Y, Fujiu K, Cheung CW, et al. Thoracic spinal cord stimulation for heart failure as a restorative treatment (SCS HEART study): first-in-man experience. Heart Rhythm. 2015;12:588–95.

    Article  PubMed  Google Scholar 

  119. Evranos B, Canpolat U, Kocyigit D, Coteli C, Yorgun H, Aytemir K. Role of adjuvant renal sympathetic denervation in the treatment of ventricular arrhythmias. Am J Cardiol 2016;118(8):1207–10.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ronald W. Millard, Ph.D. for his careful review of the manuscript and thoughtful suggestions.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myron C. Gerson MD.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Funding

Funded in part by the John Strauss Fund for Research and Education in Cardiovascular Imaging.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 16900 kb)

Addendum

Addendum

At the time of review of the manuscript proofs, a significant new contribution became available concerning the role of renal sympathetic stimulation causing ventricular arrhythmias. This retrospective, propensity-matched study of 16 patients with refractory ventricular arrhythmias treated with catheter ablation plus renal sympathetic denervation provided a comparison to 16 patients treated with catheter ablation alone. With a median follow-up of 15 months, there was a significant decrease in burden of ventricular tachycardia/ventricular fibrillation and of anti-tachycardia pacing/shock therapies delivered in the group that received adjunctive renal sympathetic denervation therapy (p < 0.05).119

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamali, H.K., Waqar, F. & Gerson, M.C. Cardiac autonomic innervation. J. Nucl. Cardiol. 24, 1558–1570 (2017). https://doi.org/10.1007/s12350-016-0725-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-016-0725-7

Keywords

Navigation