Skip to main content
Log in

Autonomic Modulation Options in Cardiovascular Disease Treatment: Current and Emerging

  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

This review aims to provide an overview of the neural innervation of the cardiovascular system and present a summary of current autonomic targets for a variety of cardiovascular diseases.

Recent findings

Autonomic modulation through targeting sympathetic and vagal tone is an emerging therapeutic approach to treat cardiovascular disease. Promising applications include the treatment of hypertension, heart failure, and cardiac arrhythmias.

Summary

Autonomic dysregulation is characteristic of a number of cardiovascular disease states. Successfully targeting the autonomic nervous system to treat disease critically requires understanding of anatomy, pathophysiology, and development of new technologies and approaches to deliver effective therapy to selected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as:  • Of importance

  1. Vaduganathan M, et al. The global burden of cardiovascular diseases and risk. J Am Coll Cardiol. 2022;80(25):2361–71.

    Article  PubMed  Google Scholar 

  2. Kawashima T. The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anat Embryol. 2005;209(6):425–38.

    Article  Google Scholar 

  3. Pachon JC, et al. “Cardioneuroablation”–new treatment for neurocardiogenic syncope, functional AV block and sinus dysfunction using catheter RF-ablation. Europace. 2005;7(1):1–13.

    Article  PubMed  Google Scholar 

  4. • Chen PS, et al. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res. 2014;114(9):1500–15. This article provides an excellent description and summary of embrology and anatomy of the intrinsic autonomic innervation of the heart.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Florea VG, Cohn JN. The autonomic nervous system and heart failure. Circ Res. 2014;114(11):1815–26.

    Article  CAS  Google Scholar 

  6. Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114(11):1804–14.

    Article  CAS  PubMed  Google Scholar 

  7. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114(6):1004–21.

    Article  CAS  Google Scholar 

  8. Liu C, et al. Vagal stimulation and arrhythmias. J Atr Fibrillation. 2020;13(1):2398.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li YL. Stellate ganglia and cardiac sympathetic overactivation in heart failure. Int J Mol Sci. 2022;23(21).

  10. • Wu P, Vaseghi M. The autonomic nervous system and ventricular arrhythmias in myocardial infarction and heart failure. Pacing Clin Electrophysiol. 2020;43(2):172–80. This article provides an excellent description of the cardiac autonomic system on cardiac electrophysiology and function.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bettoni M, Zimmermann M. Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation. 2002;105(23):2753–9.

    Article  PubMed  Google Scholar 

  12. Bhatt DL, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401.

    Article  CAS  PubMed  Google Scholar 

  13. Weber MA, et al. The REDUCE HTN: REINFORCE: randomized, sham-controlled trial of bipolar radiofrequency renal denervation for the treatment of hypertension. JACC Cardiovasc Interv. 2020;13(4):461–70.

    Article  Google Scholar 

  14. Azizi M, et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. The Lancet. 2018;391(10137):2335–45.

    Article  Google Scholar 

  15. Azizi M, et al. Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN TRIO): a randomised, multicentre, single-blind, sham-controlled trial. The Lancet. 2021;397(10293):2476–86.

    Article  CAS  Google Scholar 

  16. Mahfoud F, et al. Long-term efficacy and safety of renal denervation in the presence of antihypertensive drugs (SPYRAL HTN-ON MED): a randomised, sham-controlled trial. The Lancet. 2022;399(10333):1401–10.

    Article  CAS  Google Scholar 

  17. Böhm M, et al. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. The Lancet. 2020;395(10234):1444–51.

    Article  Google Scholar 

  18. Azizi M, et al. Endovascular ultrasound renal denervation to treat hypertension: the RADIANCE II randomized clinical trial. JAMA. 2023;329(8):651–61.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kario K, et al. Catheter-based ultrasound renal denervation in patients with resistant hypertension: the randomized, controlled REQUIRE trial. Hypertens Res. 2022;45(2):221–31.

    Article  PubMed  Google Scholar 

  20. Qian PC, et al. Transvascular pacing of aorticorenal ganglia provides a testable procedural endpoint for renal artery denervation. JACC: Cardiovasc Interv. 2019;12(12):1109–1120.

  21. Zhou H, et al. Mapping renal innervations by renal nerve stimulation and characterizations of blood pressure response patterns. J Cardiovasc Transl Res. 2022;15(1):29–37.

    Article  PubMed  Google Scholar 

  22. Karaskov AM, et al. Perspective directions in management of severe group two pulmonary hypertension. Kardiologiia. 2017;57(11):23–8.

    CAS  PubMed  Google Scholar 

  23. Zhang H, et al. Pulmonary artery denervation significantly increases 6-min walk distance for patients with combined pre- and post-capillary pulmonary hypertension associated with left heart failure. JACC: Cardiovasc Interv. 2019;12(3):274–284.

  24. Romanov A, et al. Pulmonary artery denervation for patients with residual pulmonary hypertension after pulmonary endarterectomy. J Am Coll Cardiol. 2020;76(8):916–26.

    Article  Google Scholar 

  25. Zheng Z, et al. A Meta-analysis of the efficacy of pulmonary artery denervation in the treatment of pulmonary hypertension. Heart Lung. 2022;53:42–50.

    Article  PubMed  Google Scholar 

  26. Gao JQ, Yang W, Liu ZJ. Percutaneous renal artery denervation in patients with chronic systolic heart failure: a randomized controlled trial. Cardiol J. 2019;26(5):503–10.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen W, et al. Preliminary effects of renal denervation with saline irrigated catheter on cardiac systolic function in patients with heart failure: a prospective, randomized, controlled, pilot study. Catheter Cardiovasc Interv. 2017;89(4):E153–61.

    Article  PubMed  Google Scholar 

  28. Xia Z, et al. Safety and efficacy of renal denervation in patients with heart failure with reduced ejection fraction (HFrEF): a systematic review and meta-analysis. Heliyon. 2022;8(1):e08847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kresoja K-P, et al. Renal sympathetic denervation in patients with heart failure with preserved ejection fraction. Circ Heart Fail. 2021;14(3):e007421.

  30. Fudim M, et al. Splanchnic nerve block for decompensated chronic heart failure: splanchnic-HF. Eur Heart J. 2018;39(48):4255–6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fudim M, et al. Splanchnic nerve block for chronic heart failure. JACC: Heart Fail. 2020;8(9):742–752.

  32. Fudim M, et al. Transvenous right greater splanchnic nerve ablation in heart failure and preserved ejection fraction: first-in-human study. JACC Heart Fail. 2022;10(10):744–52.

    Article  PubMed  Google Scholar 

  33. Fudim M, et al. Endovascular ablation of the right greater splanchnic nerve in heart failure with preserved ejection fraction: early results of the REBALANCE-HF trial roll-in cohort. Eur J Heart Fail. 2022;24(8):1410–4.

    Article  CAS  PubMed  Google Scholar 

  34. De Ferrari GM, et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J. 2011;32(7):847–55.

    Article  PubMed  Google Scholar 

  35. Anand IS, et al. Comparison of symptomatic and functional responses to vagus nerve stimulation in ANTHEM-HF, INOVATE-HF, and NECTAR-HF. ESC Heart Fail. 2020;7(1):75–83.

    PubMed  PubMed Central  Google Scholar 

  36. Zannad F, et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J. 2015;36(7):425–33.

    Article  PubMed  Google Scholar 

  37. Gold MR, et al. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF Trial. J Am Coll Cardiol. 2016;68(2):149–58.

    Article  PubMed  Google Scholar 

  38. De Ferrari GM, et al. Long-term vagal stimulation for heart failure: eighteen month results from the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) trial. Int J Cardiol. 2017;244:229–34.

    Article  PubMed  Google Scholar 

  39. Sharma K, et al. Long-term Follow-up of patients with heart failure and reduced ejection fraction receiving autonomic regulation therapy in the ANTHEM-HF pilot study. Int J Cardiol. 2021;323:175–8.

    Article  Google Scholar 

  40. Konstam MA, et al. Impact of autonomic regulation therapy in patients with heart failure. Circulation: Heart Fail. 2019;12(11):e005879.

  41. Butt MF, et al. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat. 2020;236(4):588–611.

    Article  PubMed  Google Scholar 

  42. Stavrakis S, et al. Neuromodulation of inflammation to treat heart failure with preserved ejection fraction: a pilot randomized clinical trial. J Am Heart Assoc. 2022;11(3):e023582.

    Article  CAS  PubMed Central  Google Scholar 

  43. Abraham WT, et al. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC: Heart Fail. 2015;3(6):487–496.

  44. Zile MR, et al. Baroreflex activation therapy in patients with heart failure with reduced ejection fraction. J Am Coll Cardiol. 2020;76(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  45. Abraham WL, McCann JP, Zile M. Baroreflex activation therapy (BAT) in patients with heart failure and a reduced ejection fraction (BeAT-HF): long-term outcomes. In Technol Heart Fail Ther. 2023. Ma, USA.

  46. Pokushalov E, et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol. 2012;60(13):1163–70.

    Article  Google Scholar 

  47. Nawar K, et al. Renal denervation for atrial fibrillation: a comprehensive updated systematic review and meta-analysis. J Hum Hypertens. 2022;36(10):887–97.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Steinberg JS, et al. Effect of Renal denervation and catheter ablation vs catheter ablation alone on atrial fibrillation recurrence among patients with paroxysmal atrial fibrillation and hypertension: the ERADICATE-AF randomized clinical trial. JAMA. 2020;323(3):248–55.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yan F, et al. Different effects of additional ganglion plexus ablation on catheter and surgical ablation for atrial fibrillation: a systemic review and meta-analysis. J Cardiovasc Electrophysiol. 2019;30(12):3039–49.

    Article  PubMed  Google Scholar 

  50. Kim MY, et al. Ectopy-triggering ganglionated plexuses ablation to prevent atrial fibrillation: GANGLIA-AF study. Heart Rhythm. 2022;19(4):516–24.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mikhaylov E, et al. Outcome of anatomic ganglionated plexi ablation to treat paroxysmal atrial fibrillation: a 3-year follow-up study. EP Europace. 2010;13(3):362–70.

    Article  Google Scholar 

  52. Stavrakis S, et al. Low-level vagus nerve stimulation suppresses post-operative atrial fibrillation and inflammation: a randomized study. JACC Clin Electrophysiol. 2017;3(9):929–38.

    Article  PubMed  Google Scholar 

  53. Stavrakis S, et al. TREAT AF (transcutaneous electrical vagus nerve stimulation to suppress atrial fibrillation): a randomized clinical trial. JACC Clin Electrophysiol. 2020;6(3):282–91.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Meng L, et al. Efficacy of stellate ganglion blockade in managing electrical storm: a systematic review. JACC Clin Electrophysiol. 2017;3(9):942–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Markman TM, et al. Effect of transcutaneous magnetic stimulation in patients with ventricular tachycardia storm: a randomized clinical trial. JAMA Cardiol. 2022;7(4):445–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nonoguchi NM, et al. Stellate ganglion phototherapy using low-level laser. JACC: Clin Electrophysiol. 2021;7(10):1297–1308.

  57. Vaseghi M, et al. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: intermediate and long-term follow-up. Heart Rhythm. 2014;11(3):360–6.

    Article  PubMed  Google Scholar 

  58. Vaseghi M, et al. Cardiac sympathetic denervation for refractory ventricular arrhythmias. J Am Coll Cardiol. 2017;69(25):3070–80.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lee ACH, Tung R, Ferguson MK. Thoracoscopic sympathectomy decreases disease burden in patients with medically refractory ventricular arrhythmias. Interact Cardiovasc Thorac Surg. 2022;34(5):783–90.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Markman TM, et al. Neuromodulation for the treatment of refractory ventricular arrhythmias. JACC: Clin Electrophysiol. 2023;9(2):161–169.

  61. Olde Nordkamp LRA, et al. Left cardiac sympathetic denervation in the Netherlands for the treatment of inherited arrhythmia syndromes. Neth Heart J. 2014;22(4):160–166.

  62. Antiel RM, et al. Quality of life after videoscopic left cardiac sympathetic denervation in patients with potentially life-threatening cardiac channelopathies/cardiomyopathies. Heart Rhythm. 2016;13(1):62–9.

    Article  PubMed  Google Scholar 

  63. Ukena C, et al. Renal sympathetic denervation for treatment of electrical storm: first-in-man experience. Clin Res Cardiol. 2012;101(1):63–7.

    Article  Google Scholar 

  64. Liu KC, et al. Abstract 16805: Renal sympathetic denervation as an adjunctive therapy to radiofrequency ablation and cardiac sympathetic denervation for refractory ventricular tachycardia. Circulation. 2018;138(Suppl_1):A16805–A16805.

  65. Bradfield JS, et al. Renal denervation as adjunctive therapy to cardiac sympathetic denervation for ablation refractory ventricular tachycardia. Heart Rhythm. 2020;17(2):220–7.

    Article  Google Scholar 

  66. Hadaya J, et al. Vagal nerve stimulation reduces ventricular arrhythmias and mitigates adverse neural cardiac remodeling post–myocardial infarction. JACC: Basic Trans Sci.

  67. Yu L, et al. Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study. JACC Cardiovasc Interv. 2017;10(15):1511–20.

    Article  PubMed  Google Scholar 

  68. Pachon JC, et al. Catheter ablation of severe neurally meditated reflex (neurocardiogenic or vasovagal) syncope: cardioneuroablation long-term results. Europace. 2011;13(9):1231–42.

    Article  Google Scholar 

  69. Vandenberk B, et al. Cardioneuroablation for vasovagal syncope: a systematic review and meta-analysis. Heart Rhythm. 2022;19(11):1804–12.

    Article  PubMed  Google Scholar 

  70. Piotrowski R, et al. Cardioneuroablation for reflex syncope: efficacy and effects on autonomic cardiac regulation—a prospective randomized trial. JACC: Clin Electrophysiol. 2023;9(1):85–95.

  71. Shen MJ, Choi EK, Tan AY, Lin SF, Fishbein MC, Chen LS, Chen PS. Neural mechanisms of atrial arrhythmias. Nat Rev Cardiol. 2011;9(1):30–9. https://doi.org/10.1038/nrcardio.2011.139. PMID: 21946776.

    Article  PubMed  Google Scholar 

Download references

Funding

Pierre Qian was supported by a NHMRC Investigator Emerging Leader 1 grant (GNT2018376) and a National Heart Foundation of Australia Future Leaders Fellowship and Paul Korner Award (106780).

Author information

Authors and Affiliations

Authors

Contributions

A.V. wrote the main manuscript and P.B. and P.C editted and reviewed the manuscript

Corresponding author

Correspondence to Albert Vien BPharm, MBBS.

Ethics declarations

Conflict of Interest

No potential conflicts of interest relevant to this article were reported.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vien, A., Balaji, P. & Qian, P.C. Autonomic Modulation Options in Cardiovascular Disease Treatment: Current and Emerging. Curr Treat Options Cardio Med 25, 753–770 (2023). https://doi.org/10.1007/s11936-023-01023-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-023-01023-1

Keywords

Navigation