Skip to main content

Advertisement

Log in

Cardiovascular PET/MR imaging: Quo Vadis?

  • Theme Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

With the recent advent of PET/MRI scanners, the combination of molecular imaging with a variety of known and novel PET radiotracers, the high spatial resolution of MRI, and its potential for multi-parametric imaging are anticipated to increase the diagnostic accuracy in cardiovascular disease detection, while providing novel mechanistic insights into the initiation and progression of the disease state. For the time being, cardiac PET/MRI emerges as potential clinical tool in the identification and characterization of infiltrative cardiac diseases, such as sarcoidosis, acute or chronic myocarditis, and cardiac tumors, respectively. The application of PET/MRI in conjunction with various radiotracer probes in the identification of the vulnerable atherosclerotic plaque also holds much promise but needs further translation and validation in clinical investigations. The combination of molecular imaging and creation of multi-parametric imaging maps with PET/MRI, however, are likely to set new horizons to develop predictive parameters for myocardial recovery and treatment response in ischemic and non-ischemic cardiomyopathy patients. Molecular imaging and multi-parametric imaging in cardiovascular disease with PET/MRI at current stage are at its infancy but bear a bright future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

DE-MRI:

Delayed gadolinium enhancement magnetic resonance imaging

PET/CT:

Positron emission tomography/computed tomography

PET/MRI:

Positron emission tomography/magnetic resonance imaging

18F-FDG:

18F-fluorodeoxyglucose

18F-FMISO:

18F-fluoromisonidazole

18F-NaF:

18F-sodium fluoride

PCI:

Percutaneous coronary intervention

SUV:

Standardized uptake value

References

  1. LaForest R, Woodard PK, Gropler RJ. Cardiovascular PET/MRI: Challenges and opportunities. Cardiol Clin. 2016;34:25–35.

    Article  PubMed  Google Scholar 

  2. Lau JM, Laforest R, Sotoudeh H, Nie X, Sharma S, McConathy J, et al. Evaluation of attenuation correction in cardiac pet using PET/MR. J Nucl Cardiol. 2015. doi:10.1007/s12350-015-0197-1.

    PubMed  Google Scholar 

  3. Nensa F, Beiderwellen K, Heusch P, Wetter A. Clinical applications of PET/MRI: Current status and future perspectives. Diagn Interv Radiol. 2014;20:438–47.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kaufmann PA. Cardiac PET/MR: Big footprint-small step? J Nucl Cardiol. 2015;22:225–6.

    Article  PubMed  Google Scholar 

  5. Vontobel J, Liga R, Possner M, Clerc OF, Mikulicic F, Veit-Haibach P, et al. MR-based attenuation correction for cardiac FDG pet on a hybrid PET/MRI scanner: Comparison with standard ct attenuation correction. Eur J Nucl Med Mol Imaging. 2015;42:1574–80.

    Article  PubMed  Google Scholar 

  6. Rischpler C, Nekolla SG, Kunze KP, Schwaiger M. PET/MRI of the heart. Sem Nucl Med. 2015;45:234–47.

    Article  Google Scholar 

  7. Bailey DL, Pichler BJ, Guckel B, Barthel H, Beer AJ, Bremerich J, et al. Combined PET/MRI: Multi-modality multi-parametric imaging is here: Summary report of the 4th international workshop on pet/mr imaging; February 23-27, 2015, Tubingen, Germany. Mol Imaging Biol. 2015;17:595–608.

    Article  CAS  PubMed  Google Scholar 

  8. Schindler TH. Myocardial blood flow: Putting it into clinical perspective. J Nucl Cardiol. 2015. doi:10.1007/s12350-015-0372-4.

    Google Scholar 

  9. Schindler TH. Positron-emitting myocardial blood flow tracers and clinical potential. Prog Cardiovasc Dis. 2015;57:588–606.

    Article  PubMed  Google Scholar 

  10. Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging. 2010;3:623–40.

    Article  PubMed  Google Scholar 

  11. Iannuzzi MC, Fontana JR. Sarcoidosis: Clinical presentation, immunopathogenesis, and therapeutics. JAMA. 2011;305:391–9.

    Article  CAS  PubMed  Google Scholar 

  12. Sekhri V, Sanal S, Delorenzo LJ, Aronow WS, Maguire GP. Cardiac sarcoidosis: A comprehensive review. Arch Med Sci. 2011;7:546–54.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schatka I, Bengel FM. Advanced imaging of cardiac sarcoidosis. J Nucl Med. 2014;55:99–106.

    Article  PubMed  Google Scholar 

  14. Erdal BS, Clymer BD, Yildiz VO, Julian MW, Crouser ED. Unexpectedly high prevalence of sarcoidosis in a representative U.S. Metropolitan population. Respir Med. 2012;106:893–9.

    Article  PubMed  Google Scholar 

  15. Hennessy TW, Ballard DJ, DeRemee RA, Chu CP, Melton LJ 3rd. The influence of diagnostic access bias on the epidemiology of sarcoidosis: A population-based study in rochester, minnesota, 1935-1984. J Clin Epidemiol. 1988;41:565–70.

    Article  CAS  PubMed  Google Scholar 

  16. McArdle B, Dowsley TF, Cocker MS, Ohira H, deKemp RA, DaSilva J, et al. Cardiac PET: Metabolic and functional imaging of the myocardium. Sem Nucl Med. 2013;43:434–48.

    Article  Google Scholar 

  17. Birnie D, Ha AC, Gula LJ, Chakrabarti S, Beanlands RS, Nery P. Cardiac sarcoidosis. Clin Chest Med. 2015;36:657–68.

    Article  PubMed  Google Scholar 

  18. Schindler TH, Solnes L. Role of pet/ct for the identification of cardiac sarcoid disease. Ann Nucl Cardiol. 2015;1:79–86.

    Article  Google Scholar 

  19. Blankstein R, Osborne M, Naya M, Waller A, Kim CK, Murthy VL, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014;63:329–36.

    Article  PubMed  Google Scholar 

  20. Osborne MT, Hulten EA, Singh A, Waller AH, Bittencourt MS, et al. Reduction in 18F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol. 2014;21:166–74.

    Article  PubMed  Google Scholar 

  21. Youssef G, Leung E, Mylonas I, Nery P, Williams K, Wisenberg G, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: A systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53:241–8.

    Article  CAS  PubMed  Google Scholar 

  22. Ohira H, Birnie DH, Pena E, Bernick J, Mc Ardle B, Leung E, et al. Comparison of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and cardiac magnetic resonance (CMR) in corticosteroid-naive patients with conduction system disease due to cardiac sarcoidosis. Eur J Nucl Med Mol Imaging. 2016;43:259–69.

    Article  CAS  PubMed  Google Scholar 

  23. Schneider S, Batrice A, Rischpler C, Eiber M, Ibrahim T, Nekolla SG. Utility of multimodal cardiac imaging with pet/mri in cardiac sarcoidosis: IMPLICATIONS for diagnosis, monitoring and treatment. Eur Heart J. 2014;35:312.

    Article  PubMed  Google Scholar 

  24. Nensa F, Poeppel TD, Beiderwellen K, Schelhorn J, Mahabadi AA, Erbel R, et al. Hybrid PET/MR imaging of the heart: Feasibility and initial results. Radiology. 2013;268:366–73.

    Article  PubMed  Google Scholar 

  25. Wicks EC, Menezes LJ, Elliott PM. Improving the diagnostic accuracy for detecting cardiac sarcoidosis. Expert Rev Cardiovasc Ther. 2015;13:223–36.

    Article  CAS  PubMed  Google Scholar 

  26. Dall’Armellina E, Karia N, Lindsay AC, Karamitsos TD, Ferreira V, Robson MD, et al. Dynamic changes of edema and late gadolinium enhancement after acute myocardial infarction and their relationship to functional recovery and salvage index. Circ Cardiovasc Imaging. 2011;4:228–36.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Montecucco F, Carbone F, Schindler TH. Pathophysiology of st-segment elevation myocardial infarction: Novel mechanisms and treatments. Eur Heart J. 2015. doi:10.1093/eurheartj/ehv592.

    Google Scholar 

  28. Heusch P, Nensa F, Heusch G. Is MRI really the gold standard for the quantification of salvage from myocardial infarction? Circ Res. 2015;117:222–4.

    Article  CAS  PubMed  Google Scholar 

  29. Kim HW, Van Assche L, Jennings RB, Wince WB, Jensen CJ, Rehwald WG, et al. Relationship of T2-weighted MRI myocardial hyperintensity and the ischemic area-at-risk. Circ Res. 2015;117:254–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carbone I, Friedrich MG. Myocardial edema imaging by cardiovascular magnetic resonance: Current status and future potential. Curr Cardiol Rep. 2012;14:1–6.

    Article  PubMed  Google Scholar 

  31. Nensa F, Tezgah E, Poeppel T, Nassenstein K, Schlosser T. Diagnosis and treatment response evaluation of cardiac sarcoidosis using positron emission tomography/magnetic resonance imaging. Eur Heart J. 2015;36:550.

    Article  PubMed  Google Scholar 

  32. Pollack A, Kontorovich AR, Fuster V, Dec GW. Viral myocarditis—diagnosis, treatment options, and current controversies. Nat Rev Cardiol. 2015;12:670–80.

    Article  PubMed  Google Scholar 

  33. Hinojar R, Foote L, Arroyo Ucar E, Jackson T, Jabbour A, et al. Native T1 in discrimination of acute and convalescent stages in patients with clinical diagnosis of myocarditis: A proposed diagnostic algorithm using CMR. JACC Cardiovasc Imaging. 2015;8:37–46.

    Article  PubMed  Google Scholar 

  34. Vermes E, Childs H, Faris P, Friedrich MG. Predictive value of CMR criteria for LV functional improvement in patients with acute myocarditis. Eur Heart J Cardiovasc Imaging. 2014;15:1140–4.

    Article  PubMed  Google Scholar 

  35. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, et al. International consensus group on cardiovascular magnetic resonance in M. Cardiovascular magnetic resonance in myocarditis: A JACC white paper. J Am Coll Cardiol. 2009;53:1475–87.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lurz P, Eitel I, Adam J, Steiner J, Grothoff M, Desch S, et al. Diagnostic performance of CMR imaging compared with EMB in patients with suspected myocarditis. JACC Cardiovasc Imaging. 2012;5:513–24.

    Article  PubMed  Google Scholar 

  37. von Olshausen G, Hyafil F, Langwieser N, Laugwitz KL, Schwaiger M, Ibrahim T. Detection of acute inflammatory myocarditis in epstein barr virus infection using hybrid 18F-fluoro-deoxyglucose-positron emission tomography/magnetic resonance imaging. Circulation. 2014;130:925–6.

    Article  Google Scholar 

  38. Nensa F, Poeppel TD, Krings P, Schlosser T. Multiparametric assessment of myocarditis using simultaneous positron emission tomography/magnetic resonance imaging. Eur Heart J. 2014;35:2173.

    Article  PubMed  Google Scholar 

  39. Probst S, Seltzer A, Spieler B, Chachoua A, Friedman K. The appearance of cardiac metastasis from squamous cell carcinoma of the lung on F-18 FDG PET/CT and post hoc PET/MRI. Clin Nucl Med. 2011;36:311–2.

    Article  PubMed  Google Scholar 

  40. Nensa F, Tezgah E, Poeppel TD, Jensen CJ, Schelhorn J, Kohler J, et al. Integrated 18F-FDG PET/MR imaging in the assessment of cardiac masses: A pilot study. J Nucl Med. 2015;56:255–60.

    Article  PubMed  Google Scholar 

  41. Hoffmann U, Globits S, Schima W, Loewe C, Puig S, Oberhuber G, et al. Usefulness of magnetic resonance imaging of cardiac and paracardiac masses. Am J Card. 2003;92:890–5.

    Article  PubMed  Google Scholar 

  42. Rahbar K, Seifarth H, Schafers M, Stegger L, Hoffmeier A, Spieker T, et al. Differentiation of malignant and benign cardiac tumors using 18F-FDG PET/CT. J Nucl Med. 2012;53:856–63.

    Article  CAS  PubMed  Google Scholar 

  43. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–53.

    Article  CAS  PubMed  Google Scholar 

  44. Ibrahim T, Nekolla SG, Hornke M, Bulow HP, Dirschinger J, Schomig A, et al. Quantitative measurement of infarct size by contrast-enhanced magnetic resonance imaging early after acute myocardial infarction: Comparison with single-photon emission tomography using Tc-99 m-sestamibi. J Am Coll Cardiol. 2005;45:544–52.

    Article  PubMed  Google Scholar 

  45. Dilsizian V. Cardiac magnetic resonance versus SPECT: Are all noninfarct myocardial regions created equal? J Nucl Cardiol. 2007;14:9–14.

    Article  PubMed  Google Scholar 

  46. Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: Comparison with positron emission tomography. Circulation. 2002;105:162–7.

    Article  PubMed  Google Scholar 

  47. Ugander M, Bagi PS, Oki AJ, Chen B, Hsu LY, Aletras AH, et al. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging. 2012;5:596–603.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Heusch G, Botker HE, Przyklenk K, Redington A, Yellon D. Remote ischemic conditioning. J Am Coll Cardiol. 2015;65:177–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rischpler C, Langwieser N, Souvatzoglou M, Batrice A, van Marwick S, Snajberk J, et al. PET/MRI early after myocardial infarction: Evaluation of viability with late gadolinium enhancement transmurality vs. 18F-FDG uptake. Eur Heart J Cardiovasc Imaging. 2015;16:661–9.

    PubMed  Google Scholar 

  50. Schindler TH, Lima JA. Assessment of myocardial matrix expansion with cardiac magnetic resonance: Entering a new area of cardiac risk stratification in type 2 diabetes mellitus? Eur Heart J. 2014;35:608–11.

    Article  CAS  PubMed  Google Scholar 

  51. Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J. 2014;35:657–64.

    Article  CAS  PubMed  Google Scholar 

  52. Sahul ZH, Mukherjee R, Song J, McAteer J, Stroud RE, Dione DP, et al. Targeted imaging of the spatial and temporal variation of matrix metalloproteinase activity in a porcine model of postinfarct remodeling: Relationship to myocardial dysfunction. Circ Cardiovasc Imaging. 2011;4:381–91.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sinusas AJ, Thomas JD, Mills G. The future of molecular imaging. JACC Cardiovasc Imaging. 2011;4:799–806.

    Article  PubMed  Google Scholar 

  54. Fukushima K, Bravo PE, Higuchi T, Schuleri KH, Lin X, Abraham MR, et al. Molecular hybrid positron emission tomography/computed tomography imaging of cardiac angiotensin II type 1 receptors. J Am Coll Cardiol. 2012;60:2527–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thackeray JT, Derlin T, Haghikia A, Napp LC, Wang Y, Ross TL, et al. Molecular imaging of the chemokine receptor cxcr4 after acute myocardial infarction. JACC Cardiovasc Imaging. 2015;8:1417–26.

    Article  PubMed  Google Scholar 

  56. Schindler TH, Dilsizian V. Cardiac positron emission tomography/computed tomography imaging of the renin-angiotensin system in humans holds promise for image-guided approach to heart failure therapy. J Am Coll Cardiol. 2012;60:2535–8.

    Article  PubMed  Google Scholar 

  57. Wollenweber T, Roentgen P, Schafer A, Schatka I, Zwadlo C, Brunkhorst T, et al. Characterizing the inflammatory tissue response to acute myocardial infarction by clinical multimodality noninvasive imaging. Circ Cardiovasc Imaging. 2014;7:811–8.

    Article  PubMed  Google Scholar 

  58. Naya M, Tamaki N. Stress MPI, coronary CTA, and multimodality for subsequent risk analysis. J Nucl Cardiol. 2016. doi:10.1007/s12350-016-0400-z.

    Google Scholar 

  59. van den Hoogen IJ, de Graaf MA, Roos CJ, Leen AC, Kharagjitsingh AV, Wolterbeek R, et al. Prognostic value of coronary computed tomography angiography in diabetic patients without chest pain syndrome. J Nucl Cardiol. 2016;23:24–36.

    Article  PubMed  Google Scholar 

  60. Duvall WL, Savino JA, Levine EJ, Baber U, Lin JT, Einstein AJ, et al. A comparison of coronary CTA and stress testing using high-efficiency SPECT MPI for the evaluation of chest pain in the emergency department. J Nucl Cardiol. 2014;21:305–18.

    Article  PubMed  Google Scholar 

  61. Fayad ZA, Fuster V, Fallon JT, Jayasundera T, Worthley SG, Helft G, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation. 2000;102:506–10.

    Article  CAS  PubMed  Google Scholar 

  62. Kim WY, Stuber M, Bornert P, Kissinger KV, Manning WJ, Botnar RM. Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation. 2002;106:296–9.

    Article  PubMed  Google Scholar 

  63. Hoshi T, Sato A, Akiyama D, Hiraya D, Sakai S, Shindo M, et al. Coronary high-intensity plaque on T1-weighted magnetic resonance imaging and its association with myocardial injury after percutaneous coronary intervention. Eur Heart J. 2015;36:1913–22.

    Article  CAS  PubMed  Google Scholar 

  64. Schindler TH, Bax JJ. Assessment of coronary artery plaque with non-contrast and T1-weighted magnetic resonance: Promise for clinical use? Eur Heart J. 2015. doi:10.1093/eurheartj/ehv246.

    Google Scholar 

  65. Ibrahim T, Makowski MR, Jankauskas A, Maintz D, Karch M, Schachoff S, et al. Serial contrast-enhanced cardiac magnetic resonance imaging demonstrates regression of hyperenhancement within the coronary artery wall in patients after acute myocardial infarction. JACC Cardiovasc Imaging. 2009;2:580–8.

    Article  PubMed  Google Scholar 

  66. AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the journal of nuclear cardiology in 2015. Part 1 of 2: Plaque imaging, positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol. 2016;2016:122–30.

    Article  Google Scholar 

  67. Golestani R, Mirfeizi L, Zeebregts CJ, Westra J, de Haas HJ, Glaudemans AW, et al. Feasibility of [18F]-RGD for ex vivo imaging of atherosclerosis in detection of alpha-beta3 integrin expression. J Nucl Cardiol. 2015;22:1179–86.

    Article  PubMed  Google Scholar 

  68. Blomberg BA, Thomassen A, Takx RA, Hildebrandt MG, Simonsen JA, Buch-Olsen KM, et al. Delayed 18F-fluorodeoxyglucose PET/CT imaging improves quantitation of atherosclerotic plaque inflammation: Results from the CAMONA study. J Nucl Cardiol. 2014;21:588–97.

    Article  PubMed  Google Scholar 

  69. Tavakoli S, Vashist A, Sadeghi MM. Molecular imaging of plaque vulnerability. J Nucl Cardiol. 2014;21:1112–28.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rudd JH, Narula J, Strauss HW, Virmani R, Machac J, Klimas M, et al. Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: Ready for prime time? J Am Coll Cardiol. 2010;55:2527–35.

    Article  PubMed  Google Scholar 

  71. Davies JR, Rudd JH, Weissberg PL, Narula J. Radionuclide imaging for the detection of inflammation in vulnerable plaques. J Am Coll Cardiol. 2006;47:C57–68.

    Article  CAS  PubMed  Google Scholar 

  72. Ripa RS, Knudsen A, Hag AM, Lebech AM, Loft A, Keller SH, et al. Feasibility of simultaneous PET/MR of the carotid artery: First clinical experience and comparison to PET/CT. Am J Nucl Med Mol Imaging. 2013;3:361–71.

    PubMed  PubMed Central  Google Scholar 

  73. Cheng VY, Slomka PJ, Le Meunier L, Tamarappoo BK, Nakazato R, Dey D, et al. Coronary arterial 18F-FDG uptake by fusion of PET and coronary CT angiography at sites of percutaneous stenting for acute myocardial infarction and stable coronary artery disease. J Nucl Med. 2012;53:575–83.

    Article  CAS  PubMed  Google Scholar 

  74. Rogers IS, Nasir K, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, et al. Feasibility of FDG imaging of the coronary arteries: Comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging. 2010;3:388–97.

    Article  PubMed  Google Scholar 

  75. Quillard T, Tesmenitsky Y, Croce K, Travers R, Shvartz E, Koskinas KC, et al. Selective inhibition of matrix metalloproteinase-13 increases collagen content of established mouse atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:2464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Razavian M, Tavakoli S, Zhang J, Nie L, Dobrucki LW, Sinusas AJ, et al. Atherosclerosis plaque heterogeneity and response to therapy detected by in vivo molecular imaging of matrix metalloproteinase activation. J Nucl Med. 2011;52:1795–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mtc-mdp planar bone scintigraphy, single- and multi-field-of-view spect, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.

    PubMed  Google Scholar 

  78. Dweck MR, Chow MW, Joshi NV, Williams MC, Jones C, Fletcher AM, et al. Coronary arterial 18F-sodium fluoride uptake: A novel marker of plaque biology. J Am Coll Cardiol. 2012;59:1539–48.

    Article  CAS  PubMed  Google Scholar 

  79. Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation. 2001;103:1051–6.

    Article  CAS  PubMed  Google Scholar 

  80. Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y, Fukuda D, et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: An intravascular ultrasound study. Circulation. 2004;110:3424–9.

    Article  PubMed  Google Scholar 

  81. Vengrenyuk Y, Carlier S, Xanthos S, Cardoso L, Ganatos P, Virmani R, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci USA. 2006;103:14678–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: A prospective clinical trial. Lancet. 2014;383:705–13.

    Article  PubMed  Google Scholar 

  83. Folco EJ, Sheikine Y, Rocha VZ, Christen T, Shvartz E, Sukhova GK, et al. Hypoxia but not inflammation augments glucose uptake in human macrophages: Implications for imaging atherosclerosis with 18-fluorine-labeled 2-deoxy-d-glucose positron emission tomography. J Am Coll Cardiol. 2011;58:603–14.

    Article  CAS  PubMed  Google Scholar 

  84. Parathath S, Mick SL, Feig JE, Joaquin V, Grauer L, Habiel DM, et al. Hypoxia is present in murine atherosclerotic plaques and has multiple adverse effects on macrophage lipid metabolism. Circ Res. 2011;109:1141–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Markus R, Reutens DC, Kazui S, Read S, Wright P, Chambers BR, et al. Topography and temporal evolution of hypoxic viable tissue identified by 18F-fluoromisonidazole positron emission tomography in humans after ischemic stroke. Stroke. 2003;34:2646–52.

    Article  CAS  PubMed  Google Scholar 

  86. Martin GV, Caldwell JH, Graham MM, Grierson JR, Kroll K, Cowan MJ, et al. Noninvasive detection of hypoxic myocardium using fluorine-18-fluoromisonidazole and positron emission tomography. J Nucl Med. 1992;33:2202–8.

    CAS  PubMed  Google Scholar 

  87. Lee ST, Scott AM. Hypoxia positron emission tomography imaging with 18F-fluoromisonidazole. Sem Nucl Med. 2007;37:451–61.

    Article  Google Scholar 

  88. Mateo J, Izquierdo-Garcia D, Badimon JJ, Fayad ZA, Fuster V. Noninvasive assessment of hypoxia in rabbit advanced atherosclerosis using 18F-fluoromisonidazole positron emission tomographic imaging. Circ Cardiovasc Imaging. 2014;7:312–20.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Razavian M, Marfatia R, Mongue-Din H, Tavakoli S, Sinusas AJ, Zhang J, et al. Integrin-targeted imaging of inflammation in vascular remodeling. Arterioscler Thromb Vasc Biol. 2011;31:2820–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Saraste A, Laitinen I, Weidl E, Wildgruber M, Weber AW, Nekolla SG, et al. Diet intervention reduces uptake of alpha-beta3 integrin-targeted pet tracer 18F-galacto-RGD in mouse atherosclerotic plaques. J Nucl Cardiol. 2012;19:775–84.

    Article  PubMed  Google Scholar 

  91. Beer AJ, Pelisek J, Heider P, Saraste A, Reeps C, Metz S, et al. PET/CT imaging of integrin alphavbeta3 expression in human carotid atherosclerosis. JACC Cardiovasc Imaging. 2014;7:178–87.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This article was supported by a departmental fund from Johns Hopkins University, Baltimore, Maryland (No. 175470).

Disclosure

There is no relationship with industry and financial associations from within the past 2 years that might pose a conflict of interest in connection with the submitted article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hellmut Schindler MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schindler, T.H. Cardiovascular PET/MR imaging: Quo Vadis?. J. Nucl. Cardiol. 24, 1007–1018 (2017). https://doi.org/10.1007/s12350-016-0451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-016-0451-1

Keywords

Navigation