Skip to main content
Log in

Feasibility of [18F]-RGD for ex vivo imaging of atherosclerosis in detection of αvβ3 integrin expression

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Inflammation and angiogenesis play an important role in atherosclerotic plaque rupture. Therefore, molecular imaging of these processes could be used for determination of rupture-prone atherosclerotic plaques. αvβ3 integrin is involved in the process of angiogenesis. Targeted imaging of αvβ3 integrin has been shown to be possible in previous studies on tumor models, using radiolabeled arginine-glycine-aspartate (RGD). Our aim was to investigate feasibility of ex vivo detection of αvβ3 integrin in carotid endarterectomy (CEA) specimens.

Methods and Results

Nineteen CEA specimens were incubated in 5 MBq [18F]-RGD-K5 for 1 hour followed by 1 hour emission microPET scan. The results were quantified in 4 mm wide segments as percent incubation dose per gram (%Inc/g). Segmental-to-total ratio was calculated and presence of αvβ3 integrin and endothelial cells in each segment was confirmed by immunohistochemical staining for CD31 and αvβ3 integrin, respectively. [18F]-RGD-K5 uptake was heterogeneously distributed across CEA specimens and was localized within the vessel wall. Significant correlations were observed between segmental-to-total ratio with αvβ3 integrin staining score (r = 0.58, P = .038) and CD31 staining score (ρ = 0.67, P < .002).

Conclusion

This study showed the feasibility of integrin imaging by determination of αvβ3 integrin expression in human atherosclerotic plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part I. Circulation 2003;108:1664-72.

    Article  PubMed  Google Scholar 

  2. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, et al. Atherosclerotic plaque progression and vulnerability to rupture: Angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 2005;25:2054-61.

    Article  CAS  PubMed  Google Scholar 

  3. Nagengast WB, de Vries EG, Hospers GA, Mulder NH, de Jong JR, Hollema H, et al. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med 2007;48:1313-9.

    Article  CAS  PubMed  Google Scholar 

  4. Cai W, Chen K, Mohamedali KA, Cao Q, Gambhir SS, Rosenblum MG, et al. PET of vascular endothelial growth factor receptor expression. J Nucl Med 2006;47:2048-56.

    CAS  PubMed  Google Scholar 

  5. Lam MK, Al-Ansari S, van Dam GM, Tio RA, Breek JC, Slart RH, et al. Single-chain VEGF/Cy5.5 targeting vegf receptors to indicate atherosclerotic plaque instability. Mol Imaging Biol 2013;15:250-61.

    Article  PubMed  Google Scholar 

  6. Schnell O, Krebs B, Carlsen J, Miederer I, Goetz C, Goldbrunner RH, et al. Imaging of integrin alpha(v)beta(3) expression in patients with malignant glioma by [18F] galacto-RGD positron emission tomography. Neuro Oncol 2009;11:861-70.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Hoshiga M, Alpers CE, Smith LL, Giachelli CM, Schwartz SM. Alpha-v beta-3 integrin expression in normal and atherosclerotic artery. Circ Res 1995;77:1129-35.

    Article  CAS  PubMed  Google Scholar 

  8. Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. Mol Pharm 2006;3:472-87.

    Article  CAS  PubMed  Google Scholar 

  9. McParland BJ, Miller MP, Spinks TJ, Kenny LM, Osman S, Khela MK, et al. The biodistribution and radiation dosimetry of the Arg-Gly-Asp peptide 18F-AH111585 in healthy volunteers. J Nucl Med 2008;49:1664-7.

    Article  PubMed  Google Scholar 

  10. Beer AJ, Lorenzen S, Metz S, Herrmann K, Watzlowik P, Wester HJ, et al. Comparison of integrin alphaVbeta3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: A PET study using 18F-galacto-RGD and 18F-FDG. J Nucl Med 2008;49:22-9.

    Article  PubMed  Google Scholar 

  11. Razavian M, Marfatia R, Mongue-Din H, Tavakoli S, Sinusas AJ, Zhang J, et al. Integrin-targeted imaging of inflammation in vascular remodeling. Arterioscler Thromb Vasc Biol 2011;31:2820-6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Laitinen I, Saraste A, Weidl E, Poethko T, Weber AW, Nekolla SG, et al. Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging 2009;2:331-8.

    Article  PubMed  Google Scholar 

  13. Masteling MG, Zeebregts CJ, Tio RA, Breek JC, Tietge UJ, de Boer JF, et al. High-resolution imaging of human atherosclerotic carotid plaques with micro18F-FDG PET scanning exploring plaque vulnerability. J Nucl Cardiol 2011;18:1066-75.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Golestani R, Zeebregts CJ, Terwisscha van Scheltinga AG, Lub-de Hooge MN, van Dam GM, Glaudemans AW, et al. Feasibility of vascular endothelial growth factor imaging in human atherosclerotic plaque using (89)Zr-bevacizumab positron emission tomography. Mol Imaging 2013;12:235-43.

    CAS  PubMed  Google Scholar 

  15. Gaertner FC, Kessler H, Wester HJ, Schwaiger M, Beer AJ. Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging 2012;39:S126-38.

    Article  PubMed  Google Scholar 

  16. Narula J, Nakano M, Virmani R, Kolodgie FD, Petersen R, Newcomb R, et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol 2013;61:1041-51.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Ribatti D, Levi-Schaffer F, Kovanen PT. Inflammatory angiogenesis in atherogenesis—A double-edged sword. Ann Med 2008;40:606-21.

    Article  CAS  PubMed  Google Scholar 

  18. Kenny LM, Coombes RC, Oulie I, Contractor KB, Miller M, Spinks TJ, et al. Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med 2008;49:879-86.

    Article  PubMed  Google Scholar 

  19. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]galacto-RGD. PLoS Med 2005;2:e70.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Doss M, Kolb HC, Zhang JJ, Belanger MJ, Stubbs JB, Stabin MG, et al. Biodistribution and radiation dosimetry of the integrin marker 18F-RGD-K5 determined from whole-body PET/CT in monkeys and humans. J Nucl Med 2012;53:787-95.

    Article  PubMed  Google Scholar 

  21. Verjans J, Wolters S, Laufer W, Schellings M, Lax M, Lovhaug D, et al. Early molecular imaging of interstitial changes in patients after myocardial infarction: Comparison with delayed contrast-enhanced magnetic resonance imaging. J Nucl Cardiol 2010;17:1065-72.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001;61:1781-5.

    CAS  PubMed  Google Scholar 

  23. Meerwaldt R, Slart RH, van Dam GM, Luijckx GJ, Tio RA, Zeebregts CJ. PET/SPECT imaging: From carotid vulnerability to brain viability. Eur J Radiol 2010;74:104-9.

    Article  PubMed  Google Scholar 

  24. West XZ, Malinin NL, Merkulova AA, Tischenko M, Kerr BA, Borden EC, et al. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 2010;467:972-6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Holm PW, Slart RH, Zeebregts CJ, Hillebrands JL, Tio RA. Atherosclerotic plaque development and instability: A dual role for VEGF. Ann Med 2009;41:257-64.

    Article  CAS  PubMed  Google Scholar 

  26. Chen W, Bural GG, Torigian DA, Rader DJ, Alavi A. Emerging role of FDG-PET/CT in assessing atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging 2009;36:144-51.

    Article  PubMed  Google Scholar 

  27. Razavian M, Tavakoli S, Zhang J, Nie L, Dobrucki LW, Sinusas AJ, et al. Atherosclerosis plaque heterogeneity and response to therapy detected by in vivo molecular imaging of matrix metalloproteinase activation. J Nucl Med 2011;52:1795-802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Razansky D, Harlaar NJ, Hillebrands JL, Taruttis A, Herzog E, Zeebregts CJ, et al. Multispectral optoacoustic tomography of matrix metalloproteinase activity in vulnerable human carotid plaques. Mol Imaging Biol 2012;14:277-85.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Disclosures

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Golestani MD, PhD.

Additional information

Reza Golestani and Leila Mirfeizi contributed equally to this study.

See related editorials, doi:10.1007/s12350-015-0088-5 and doi:10.1007/s12350-015-0086-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golestani, R., Mirfeizi, L., Zeebregts, C.J. et al. Feasibility of [18F]-RGD for ex vivo imaging of atherosclerosis in detection of αvβ3 integrin expression. J. Nucl. Cardiol. 22, 1179–1186 (2015). https://doi.org/10.1007/s12350-014-0061-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-014-0061-8

Keywords

Navigation