Skip to main content

Advertisement

Log in

The S-Factor, a New Measure of Disease Severity in Spinocerebellar Ataxia: Findings and Implications

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxias (SCAs) are progressive neurodegenerative disorders, but there is no metric that predicts disease severity over time. We hypothesized that by developing a new metric, the Severity Factor (S-Factor) using immutable disease parameters, it would be possible to capture disease severity independent of clinical rating scales. Extracting data from the CRC-SCA and READISCA natural history studies, we calculated the S-Factor for 438 participants with symptomatic SCA1, SCA2, SCA3, or SCA6, as follows: ((length of CAG repeat expansion – maximum normal repeat length) /maximum normal repeat length) × (current age – age at disease onset) × 10). Within each SCA type, the S-Factor at the first Scale for the Assessment and Rating of Ataxia (SARA) visit (baseline) was correlated against scores on SARA and other motor and cognitive assessments. In 281 participants with longitudinal data, the slope of the S-Factor over time was correlated against slopes of scores on SARA and other motor rating scales. At baseline, the S-Factor showed moderate-to-strong correlations with SARA and other motor rating scales at the group level, but not with cognitive performance. Longitudinally the S-Factor slope showed no consistent association with the slope of performance on motor scales. Approximately 30% of SARA slopes reflected a trend of non-progression in motor symptoms. The S-Factor is an observer-independent metric of disease burden in SCAs. It may be useful at the group level to compare cohorts at baseline in clinical studies. Derivation and examination of the S-factor highlighted challenges in the use of clinical rating scales in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ashizawa T, Figueroa KP, Perlman SL, Gomez CM, Wilmot GR, Schmahmann JD, Ying SH, Zesiewicz TA, Paulson HL, Shakkottai VG, Bushara KO, Kuo S-H, Geschwind MD, Xia G, Mazzoni P, Krischer JP, Cuthbertson D, Holbert A, Ferguson JH, et al. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet Journal of Rare Diseases. 2013;8(1):177. https://doi.org/10.1186/1750-1172-8-177.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cancel G, Gourfinkel-An I, Stevanin G, Didierjean O, Abbas N, Hirsch E, Agid Y, Brice A. Somatic mosaicism of the CAG repeat expansion in spinocerebellar ataxia type 3/Machado-Joseph disease. Hum Mutat. 1998;11(1):23–7.  https://doi.org/10.1002/(SICI)1098-1004(1998)11:1<23::AID-HUMU4>3.0.CO;2-M

  3. Casey HL, Gomez CM (1993). Spinocerebellar Ataxia Type 6. In M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace, L. J. Bean, G. Mirzaa, & A. Amemiya (Eds.), GeneReviews®. University of Washington, Seattle. http://www.ncbi.nlm.nih.gov/books/NBK1140/

  4. Coarelli G, Darios F, Petit E, Dorgham K, Adanyeguh I, Petit E, Brice A, Mochel F, Durr A. Plasma neurofilament light chain predicts cerebellar atrophy and clinical progression in spinocerebellar ataxia. Neurobiol Dis. 2021;153:105311. https://doi.org/10.1016/j.nbd.2021.105311.

    Article  CAS  PubMed  Google Scholar 

  5. Cohen J (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Routledge. https://doi.org/10.4324/9780203771587

  6. Cornelius N, Wardman JH, Hargreaves IP, Neergheen V, Bie AS, Tümer Z, Nielsen JE, Nielsen TT. Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts: effect of coenzyme Q10 supplementation on these parameters. Mitochondrion. 2017;34:103–14. https://doi.org/10.1016/j.mito.2017.03.001.

    Article  CAS  PubMed  Google Scholar 

  7. de Mattos EP, Kolbe Musskopf M, Bielefeldt Leotti V, Saraiva-Pereira ML, Jardim LB. Genetic risk factors for modulation of age at onset in Machado-Joseph disease/spinocerebellar ataxia type 3: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2019;90(2):203–10. https://doi.org/10.1136/jnnp-2018-319200.

    Article  PubMed  Google Scholar 

  8. Deelchand DK, Joers JM, Ravishankar A, Lyu T, Emir UE, Hutter D, Gomez CM, Bushara KO, Lenglet C, Eberly LE, Öz G. Sensitivity of volumetric magnetic resonance imaging and magnetic resonance spectroscopy to progression of spinocerebellar ataxia type 1. Movement Disorders Clinical Practice. 2019;6(7):549–58. https://doi.org/10.1002/mdc3.12804.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Diallo A, Jacobi H, Tezenas du Montcel S, Klockgether T. Natural history of most common spinocerebellar ataxia: a systematic review and meta-analysis. J Neurol. 2021;268(8):2749–56. https://doi.org/10.1007/s00415-020-09815-2.

    Article  PubMed  Google Scholar 

  10. Figueroa KP, Coon H, Santos N, Velazquez L, Mederos LA, Pulst SM. Genetic analysis of age at onset variation in spinocerebellar ataxia type 2. Neurology Genetics. 2017;3(3):e155. https://doi.org/10.1212/NXG.0000000000000155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gajos KZ, Reinecke K, Donovan M, Stephen CD, Hung AY, Schmahmann JD, Gupta AS. Computer mouse use captures ataxia and parkinsonism, enabling accurate measurement and detection. Mov Disord. 2020;35(2):354–8. https://doi.org/10.1002/mds.27915.

    Article  PubMed  Google Scholar 

  12. Grobe-Einsler M, Taheri Amin A, Faber J, Schaprian T, Jacobi H, Schmitz-Hübsch T, Diallo A, Tezenas du Montcel S, Klockgether T. Development of SARA home, a new video-based tool for the assessment of ataxia at home. Mov Disord. 2021;36(5):1242–6. https://doi.org/10.1002/mds.28478.

    Article  PubMed  Google Scholar 

  13. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann Syndrome Scale. Brain. 2018;141(1):248–70. https://doi.org/10.1093/brain/awx317.

    Article  PubMed  Google Scholar 

  14. Huang S-R, Wu Y-T, Jao C-W, Soong B-W, Lirng J-F, Wu H-M, Wang P-S. CAG repeat length does not associate with the rate of cerebellar degeneration in spinocerebellar ataxia type 3. NeuroImage: Clinical. 2017;13:97–105. https://doi.org/10.1016/j.nicl.2016.11.007.

    Article  PubMed  Google Scholar 

  15. Jacobi H, Bauer P, Giunti P, Labrum R, Sweeney MG, Charles P, Durr A, Marelli C, Globas C, Linnemann C, Schols L, Rakowicz M, Rola R, Zdzienicka E, Schmitz-Hubsch T, Fancellu R, Mariotti C, Tomasello C, Baliko L, et al. The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: a 2-year follow-up study. Neurology. 2011;77(11):1035–41. https://doi.org/10.1212/WNL.0b013e31822e7ca0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jacobi H, du Montcel ST, Bauer P, Giunti P, Cook A, Labrum R, Parkinson MH, Durr A, Brice A, Charles P, Marelli C, Mariotti C, Nanetti L, Panzeri M, Rakowicz M, Sulek A, Sobanska A, Schmitz-Hübsch T, Schöls L, et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. The Lancet Neurology. 2015;14(11):1101–8. https://doi.org/10.1016/S1474-4422(15)00202-1.

    Article  PubMed  Google Scholar 

  17. Kieling C, Rieder CRM, Silva ACF, Saute JAM, Cecchin CR, Monte TL, Jardim LB. A neurological examination score for the assessment of spinocerebellar ataxia 3 (SCA3). Eur J Neurol. 2008;15(4):371–6. https://doi.org/10.1111/j.1468-1331.2008.02078.x.

    Article  CAS  PubMed  Google Scholar 

  18. Lamperti C, Naini A, Hirano M, De Vivo DC, Bertini E, Servidei S, Valeriani M, Lynch D, Banwell B, Berg M, Dubrovsky T, Chiriboga C, Angelini C, Pegoraro E, DiMauro S. Cerebellar ataxia and coenzyme Q10 deficiency. Neurology. 2003;60(7):1206–8. https://doi.org/10.1212/01.WNL.0000055089.39373.FC.

    Article  CAS  PubMed  Google Scholar 

  19. Langbehn D, Brinkman R, Falush D, Paulsen J, Hayden M, on behalf of an International Huntington’s Disease Collaborative Group. A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length: prediction of the age of onset and penetrance for HD. Clin Genet. 2004;65(4):267–77. https://doi.org/10.1111/j.1399-0004.2004.00241.x.

    Article  CAS  PubMed  Google Scholar 

  20. Leotti VB, Vries JJ, Oliveira CM, Mattos EP, Te Meerman GJ, Brunt ER, Kampinga HH, Jardim LB, Verbeek DS. CAG repeat size influences the progression rate of spinocerebellar ataxia type 3. Ann Neurol. 2021;89(1):66–73. https://doi.org/10.1002/ana.25919.

    Article  CAS  PubMed  Google Scholar 

  21. Lin C-C, Ashizawa T, Kuo S-H. Collaborative efforts for spinocerebellar ataxia research in the United States: CRC-SCA and READISCA. Front Neurol. 2020;11:902. https://doi.org/10.3389/fneur.2020.00902.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lo RY, Figueroa KP, Pulst SM, Lin C-Y, Perlman S, Wilmot G, Gomez C, Schmahmann J, Paulson H, Shakkottai VG, Ying S, Zesiewicz T, Bushara K, Geschwind M, Xia G, Subramony SH, Ashizawa T, Kuo S-H. Coenzyme Q10 and spinocerebellar ataxias: coenzyme Q10 and spinocerebellar ataxias. Mov Disord. 2015;30(2):214–20. https://doi.org/10.1002/mds.26088.

    Article  CAS  PubMed  Google Scholar 

  23. Maas RPPWM, Killaars S, van de Warrenburg BPC, Schutter DJLG. The cerebellar cognitive affective syndrome scale reveals early neuropsychological deficits in SCA3 patients. J Neurol. 2021;268(9):3456–66. https://doi.org/10.1007/s00415-021-10516-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miyai I, Ito M, Hattori N, Mihara M, Hatakenaka M, Yagura H, Sobue G, Nishizawa M. Cerebellar ataxia rehabilitation trial in degenerative cerebellar diseases. Neurorehabil Neural Repair. 2012;26(5):515–22. https://doi.org/10.1177/1545968311425918.

    Article  PubMed  Google Scholar 

  25. Monte TL, da Reckziegel ER, Augustin MC, Locks-Coelho LD, Santos ASP, Furtado GV, de Mattos EP, Pedroso JL, Barsottini OP, Vargas FR, Saraiva-Pereira M-L, Camey SA, Leotti VB, Jardim LB, on behalf of Rede Neurogenética. The progression rate of spinocerebellar ataxia type 2 changes with stage of disease. Orphanet Journal of Rare Diseases. 2018;13(1):20. https://doi.org/10.1186/s13023-017-0725-y.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Opal, P., & Ashizawa, T. (1993). Spinocerebellar ataxia type 1. In M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace, L. J. Bean, G. Mirzaa, & A. Amemiya (Eds.), GeneReviews®. University of Washington, Seattle. http://www.ncbi.nlm.nih.gov/books/NBK1184/

  27. Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu Rev Neurosci. 2007;30(1):575–621. https://doi.org/10.1146/annurev.neuro.29.051605.113042.

    Article  CAS  PubMed  Google Scholar 

  28. Öz G, Iltis I, Hutter D, Thomas W, Bushara KO, Gomez CM. Distinct neurochemical profiles of spinocerebellar ataxias 1, 2, 6, and cerebellar multiple system atrophy. Cerebellum. 2011;10(2):208–17. https://doi.org/10.1007/s12311-010-0213-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paulson H, Shakkottai V (1993). Spinocerebellar ataxia type 3. In M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace, L. J. Bean, G. Mirzaa, & A. Amemiya (Eds.), GeneReviews®. University of Washington, Seattle. http://www.ncbi.nlm.nih.gov/books/NBK1196/

  30. Pulst SM (1993). Spinocerebellar ataxia type 2. In M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace, L. J. Bean, G. Mirzaa, & A. Amemiya (Eds.), GeneReviews®. University of Washington, Seattle. http://www.ncbi.nlm.nih.gov/books/NBK1275/

  31. Reetz K, Costa AS, Mirzazade S, Lehmann A, Juzek A, Rakowicz M, Boguslawska R, Schöls L, Linnemann C, Mariotti C, Grisoli M, Dürr A, van de Warrenburg BP, Timmann D, Pandolfo M, Bauer P, Jacobi H, Hauser T-K, Klockgether T, et al. Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6. Brain. 2013;136(3):905–17. https://doi.org/10.1093/brain/aws369.

    Article  PubMed  Google Scholar 

  32. Rodríguez-Díaz JC, Velázquez-Pérez L, Rodríguez Labrada R, Aguilera Rodríguez R, Laffita Pérez D, Canales Ochoa N, Medrano Montero J, Estupiñán Rodríguez A, Osorio Borjas M, Góngora Marrero M, Reynaldo Cejas L, González Zaldivar Y, Almaguer Gotay D. Neurorehabilitation therapy in spinocerebellar ataxia type 2: a 24-week, rater-blinded, randomized, controlled trial: neurorehabilitation in SCA2. Mov Disord. 2018;33(9):1481–7. https://doi.org/10.1002/mds.27437.

    Article  PubMed  Google Scholar 

  33. Rodríguez-Labrada R, Batista-Izquierdo A, González-Melix Z, Reynado-Cejas L, Vázquez-Mojena Y, Sanz YA, Canales-Ochoa N, González-Zaldívar Y, Dogan I, Reetz K, Velázquez-Pérez L (2021). Cognitive decline is closely associated with ataxia severity in spinocerebellar ataxia type 2: a validation study of the Schmahmann Syndrome Scale. The Cerebellum. https://doi.org/10.1007/s12311-021-01305-z

  34. Schmahmann JD, Gardner R, MacMore J, Vangel MG. Development of a brief ataxia rating scale (BARS) based on a modified form of the ICARS: Brief Ataxia Rating Scale. Mov Disord. 2009;24(12):1820–8. https://doi.org/10.1002/mds.22681.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schmahmann JD, Pierce S, MacMore J, L’Italien GJ (2021). Development and validation of a patient-reported outcome measure of ataxia. Movement Disorders, mds.28670. https://doi.org/10.1002/mds.28670

  36. Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang J-S, Kremer B, Mariotti C, Melegh B, Pandolfo M, Rakowicz M, Ribai P, Rola R, Schols L, Szymanski S, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717–20. https://doi.org/10.1212/01.wnl.0000219042.60538.92.

    Article  PubMed  Google Scholar 

  37. Shah VV, Rodriguez-Labrada R, Horak FB, McNames J, Casey H, Hansson Floyd K, El-Gohary M, Schmahmann JD, Rosenthal LS, Perlman S, Velázquez-Pérez L, Gomez CM. Gait variability in spinocerebellar ataxia assessed using wearable inertial sensors. Mov Disord. 2021;36(12):2922–31. https://doi.org/10.1002/mds.28740.

    Article  PubMed  Google Scholar 

  38. Subramony SH, May W, Lynch D, Gomez C, Fischbeck K, Hallett M, Taylor P, Wilson R, Ashizawa T, for the Cooperative Ataxia Group. Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology. 2005;64(7):1261–2. https://doi.org/10.1212/01.WNL.0000156802.15466.79.

    Article  CAS  PubMed  Google Scholar 

  39. Tezenas du Montcel S, Charles P, Ribai P, Goizet C, Le Bayon A, Labauge P, Guyant-Maréchal L, Forlani S, Jauffret C, Vandenberghe N, N’Guyen K, Le Ber I, Devos D, Vincitorio C-M, Manto M-U, Tison F, Hannequin D, Ruberg M, Brice A, Durr A. Composite cerebellar functional severity score: validation of a quantitative score of cerebellar impairment. Brain. 2008;131(5):1352–61. https://doi.org/10.1093/brain/awn059.

    Article  Google Scholar 

  40. Tezenas du Montcel S, Durr A, Bauer P, Figueroa KP, Ichikawa Y, Brussino A, Forlani S, Rakowicz M, Schöls L, Mariotti C, van de Warrenburg BPC, Orsi L, Giunti P, Filla A, Szymanski S, Klockgether T, Berciano J, Pandolfo M, Boesch S, et al. Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes. Brain. 2014a;137(9):2444–55. https://doi.org/10.1093/brain/awu174.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tezenas du Montcel S, Durr A, Rakowicz M, Nanetti L, Charles P, Sulek A, Mariotti C, Rola R, Schols L, Bauer P, Dufaure-Garé I, Jacobi H, Forlani S, Schmitz-Hübsch T, Filla A, Timmann D, van de Warrenburg BP, Marelli C, Kang J-S, et al. Prediction of the age at onset in spinocerebellar ataxia type 1, 2, 3 and 6. J Med Genet. 2014b;51(7):479–86. https://doi.org/10.1136/jmedgenet-2013-102200.

    Article  PubMed  Google Scholar 

  42. Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, Bryer A, Diener HC, Massaquoi S, Gomez CM, Coutinho P, Hamida MB, Campanella G, Filla A, Schut L, Timann D, Honnorat J, Nighoghossian N, Manyam B. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci. 1997;145(2):205–11. https://doi.org/10.1016/S0022-510X(96)00231-6.

    Article  CAS  PubMed  Google Scholar 

  43. Zhou H, Nguyen H, Enriquez A, Morsy L, Curtis M, Piser T, Kenney C, Stephen CD, Gupta AS, Schmahmann JD, Vaziri A. (2021). Assessment of gait and balance impairment in people with spinocerebellar ataxia using wearable sensors. Neurological Sciences. https://doi.org/10.1007/s10072-021-05657-6

Download references

Acknowledgements

The authors would like to thank Dr Gilbert J. L’Italien (Global Health Outcomes and Epidemiology, Biohaven Pharmaceuticals, New Haven, CT, USA) for guidance with the statistical approaches.

Funding

Supported in part by the National Ataxia Foundation and the MINDlink Foundation. LPS was supported by an Australian-American Fulbright Commission scholarship. The READISCA project was supported by the National Institute of Neurological Disorders and Stroke (NINDS) grant U01 NS104326.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy D. Schmahmann.

Ethics declarations

Conflict of Interest

E.M.R. serves on the BrainSpec Inc. Scientific Advisory Board. G.Ö. consults for IXICO Technologies Limited and uniQure biopharma B.V., serves on the Scientific Advisory Board of BrainSpec Inc., and receives research support from Biogen. J.D.S. is site PI for Biohaven Pharma, consults for Biogen and MedAvante, and holds the copyright with the General Hospital Corporation to the Brief Ataxia Rating scale, Patient Reported outcome Measure of Ataxia, and the Cerebellar Cognitive Affective/Schmahmann Syndrome Scale.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvadurai, L.P., Perlman, S.L., Wilmot, G.R. et al. The S-Factor, a New Measure of Disease Severity in Spinocerebellar Ataxia: Findings and Implications. Cerebellum 22, 790–809 (2023). https://doi.org/10.1007/s12311-022-01424-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-022-01424-1

Keywords

Navigation