Skip to main content

Advertisement

Log in

Delineating the Decussating Dentato-rubro-thalamic Tract and Its Connections in Humans Using Diffusion Spectrum Imaging Techniques

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The objective of this study was to identify the decussating dentato-rubro-thalamic tract (d-DRTT) and its afferent and efferent connections in healthy humans using diffusion spectrum imaging (DSI) techniques. In the present study, the trajectory and lateralization of the d-DRTT was explored using data from subjects in the Massachusetts General Hospital-Human Connectome Project adult diffusion dataset. The afferent and efferent networks that compose the cerebello-thalamo-cerebral pathways were also reconstructed. Correlation analysis was performed to identify interrelationships between subdivisions of the cerebello-dentato-rubro-thalamic and thalamo-cerebral connections. The d-DRTT was visualized bilaterally in 28 subjects. According to a normalized quantitative anisotropy and lateralization index evaluation, the left and right d-DRTT were relatively symmetric. Afferent regions were found mainly in the posterior cerebellum, especially the entire lobule VII (crus I, II and VIIb). Efferent fibers mainly are projected to the contralateral frontal cortex, including the motor and nonmotor regions. Correlations between cerebello-thalamic connections and thalamo-cerebral connections were positive, including the lobule VIIa (crus I and II) to the medial prefrontal cortex (MPFC) and the dorsolateral prefrontal cortex and lobules VI, VIIb, VIII, and IX, to the MPFC and motor and premotor areas. These results provide DSI-based tratographic evidence showing segregated and parallel cerebellar outputs to cerebral regions. The posterior cerebellum may play an important role in supporting and handling cognitive activities through d-DRTT. Future studies will allow for a more comprehensive understanding of cerebello-cerebral connections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stoodley CJ, Schmahmann JD. Functional topography of the human cerebellum. Handb Clin Neurol. 2018;154:59–70.

    Article  PubMed  Google Scholar 

  3. Ji Q, Edwards A, Glass JO, Brinkman TM, Patay Z, Reddick WE. Measurement of Projections Between Dentate Nucleus and Contralateral Frontal Cortex in Human Brain Via Diffusion Tensor Tractography. Cerebellum. 2019;18:761–9.

    Article  PubMed  Google Scholar 

  4. Petersen KJ, Reid JA, Chakravorti S, Juttukonda MR, Franco G, Trujillo P, et al. Structural and functional connectivity of the nondecussating dentato-rubro-thalamic tract. Neuroimage. 2018;176:364–71.

    Article  PubMed  Google Scholar 

  5. Kwon HG, Hong JH, Hong CP, Lee DH, Ahn SH, Jang SH. Dentatorubrothalamic tract in human brain: diffusion tensor tractography study. Neuroradiology. 2011;53:787–91.

    Article  PubMed  Google Scholar 

  6. van Baarsen K, Kleinnijenhuis M, Konert T, van Cappellen van Walsum AM, Grotenhuis A. Tractography demonstrates dentate-rubro-thalamic tract disruption in an adult with cerebellar mutism. Cerebellum. 2013;12:617–22.

    Article  PubMed  Google Scholar 

  7. Gallay MN, Jeanmonod D, Liu J, Morel A. Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery. Brain Struct Funct. 2008;212:443–63.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Middleton FA, Strick PL. Cerebellar output: motor and cognitive channels. Trends Cogn Sci. 1998;2:348–54.

    Article  CAS  PubMed  Google Scholar 

  9. Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17:241–54.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hoover JE, Strick PL. The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci. 1999;19:1446–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmahmann JD, Guell X, Stoodley CJ, Halko MA. The Theory and Neuroscience of Cerebellar Cognition. Annu Rev Neurosci. 2019;42:337–64.

    Article  CAS  PubMed  Google Scholar 

  13. Salmi J, Pallesen KJ, Neuvonen T, Brattico E, Korvenoja A, Salonen O, et al. Cognitive and motor loops of the human cerebro-cerebellar system. J Cogn Neurosci. 2010;22:2663–76.

    Article  PubMed  Google Scholar 

  14. Fernandez-Miranda JC, Rhoton AL, Alvarez-Linera J, Kakizawa Y, Choi C, de Oliveira EP. Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery. 2008;62:989–1026 discussion 1026-1028.

    Article  PubMed  Google Scholar 

  15. Salamon N, Sicotte N, Drain A, Frew A, Alger JR, Jen J, et al. White matter fiber tractography and color mapping of the normal human cerebellum with diffusion tensor imaging. J Neuroradiol. 2007;34:115–28.

    Article  CAS  PubMed  Google Scholar 

  16. Fernandez-Miranda JC, Pathak S, Engh J, Jarbo K, Verstynen T, Yeh FC, et al. High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. Neurosurgery. 2012;71:430–53.

    Article  PubMed  Google Scholar 

  17. Alexander DC, Barker GJ. Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. Neuroimage. 2005;27:357–67.

    Article  PubMed  Google Scholar 

  18. Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging. 2006;24:478–88.

    Article  PubMed  Google Scholar 

  19. Mollink J, van Baarsen KM, Dederen PJ, Foxley S, Miller KL, Jbabdi S, et al. Dentatorubrothalamic tract localization with postmortem MR diffusion tractography compared to histological 3D reconstruction. Brain Struct Funct. 2016;221:3487–501.

    Article  CAS  PubMed  Google Scholar 

  20. Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci. 2003;6:750–7.

    Article  CAS  PubMed  Google Scholar 

  21. Karavasilis E, Christidi F, Velonakis G, Giavri Z, Kelekis NL, Efstathopoulos EP, et al. Ipsilateral and contralateral cerebro-cerebellar white matter connections: A diffusion tensor imaging study in healthy adults. J Neuroradiol. 2019;46:52–60.

    Article  PubMed  Google Scholar 

  22. Tournier JD, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage. 2007;35:1459–72.

    Article  PubMed  Google Scholar 

  23. Palesi F, Tournier JD, Calamante F, Muhlert N, Castellazzi G, Chard D, et al. Contralateral cerebello-thalamo-cortical pathways with prominent involvement of associative areas in humans in vivo. Brain Struct Funct. 2015;220:3369–84.

    Article  PubMed  Google Scholar 

  24. Jeong JW, Chugani DC, Behen ME, Tiwari VN, Chugani HT. Altered white matter structure of the dentatorubrothalamic pathway in children with autistic spectrum disorders. Cerebellum. 2012;11:957–71.

    Article  PubMed  Google Scholar 

  25. van Baarsen KM, Kleinnijenhuis M, Jbabdi S, Sotiropoulos SN, Grotenhuis JA, van Cappellen van Walsum AM. A probabilistic atlas of the cerebellar white matter. Neuroimage. 2016;124:724–32.

    Article  PubMed  Google Scholar 

  26. Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med. 2005;54:1377–86.

    Article  PubMed  Google Scholar 

  27. Van AT, Granziera C, Bammer R. An introduction to model-independent diffusion magnetic resonance imaging. Top Magn Reson Imaging. 2010;21:339–54.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang ZM, Wei PH, Shan Y, Han M, Zhang M, Liu H, et al. Identifying and characterizing projections from the subthalamic nucleus to the cerebellum in humans. Neuroimage. 2020;210:116573.

    Article  PubMed  Google Scholar 

  29. Granziera C, Schmahmann JD, Hadjikhani N, Meyer H, Meuli R, Wedeen V, et al. Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PLoS One. 2009;4:e5101.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fan Q, Witzel T, Nummenmaa A, Van Dijk KRA, Van Horn JD, Drews MK, et al. MGH-USC Human Connectome Project datasets with ultra-high b-value diffusion MRI. Neuroimage. 2016;124:1108–14.

    Article  PubMed  Google Scholar 

  31. McNab JA, Edlow BL, Witzel T, Huang SY, Bhat H, Heberlein K, et al. The Human Connectome Project and beyond: initial applications of 300 mT/m gradients. Neuroimage. 2013;80:234–45.

    Article  PubMed  Google Scholar 

  32. Setsompop K, Kimmlingen R, Eberlein E, Witzel T, Cohen-Adad J, McNab JA, et al. Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. Neuroimage. 2013;80:220–33.

    Article  CAS  PubMed  Google Scholar 

  33. Yeh FC, Tseng WY. NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage. 2011;58:91–9.

    Article  PubMed  Google Scholar 

  34. Yeh FC, Wedeen VJ, Tseng WY. Generalized q-sampling imaging. IEEE Trans Med Imaging. 2010;29:1626–35.

    Article  PubMed  Google Scholar 

  35. Diedrichsen J, Maderwald S, Küper M, Thürling M, Rabe K, Gizewski ER, et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage. 2011;54:1786–94.

    Article  CAS  PubMed  Google Scholar 

  36. Akakin A, Peris-Celda M, Kilic T, Seker A, Gutierrez-Martin A, Rhoton A. The dentate nucleus and its projection system in the human cerebellum: the dentate nucleus microsurgical anatomical study. Neurosurgery. 2014;74:401–24 discussion 424-405.

    Article  PubMed  Google Scholar 

  37. Yeh FC, Verstynen TD, Wang Y, Fernández-Miranda JC, Tseng WY. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One. 2013;8:e80713.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage. 2006;33:127–38.

    Article  PubMed  Google Scholar 

  39. Piervincenzi C, Petrilli A, Marini A, Caulo M, Committeri G, Sestieri C. Multimodal assessment of hemispheric lateralization for language and its relevance for behavior. Neuroimage. 2016;142:351–70.

    Article  CAS  PubMed  Google Scholar 

  40. Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, et al. The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture. Cereb Cortex. 2016;26:3508–26.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yamada K, Akazawa K, Yuen S, Goto M, Matsushima S, Takahata A, et al. MR imaging of ventral thalamic nuclei. AJNR. 2010;31:732–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coenen VA, Allert N, Paus S, Kronenbürger M, Urbach H, Mädler B. Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study. Neurosurgery. 2014;75:657–69 discussion 669-670.

    Article  PubMed  Google Scholar 

  43. Tuch DS. Q-ball imaging. Magn Reson Med. 2004;52:1358–72.

    Article  PubMed  Google Scholar 

  44. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44:489–501.

    Article  PubMed  Google Scholar 

  45. Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum. 2012;11:352–65.

    Article  PubMed  Google Scholar 

  46. Kim Y, Im S, Kim SH, Park GY. Laterality of cerebellar afferent and efferent pathways in a healthy right-handed population: A diffusion tensor imaging study. J Neurosci Res. 2019;97:582–96.

    Article  CAS  PubMed  Google Scholar 

  47. Fornito A, Zalesky A, Breakspear M. Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage. 2013;80:426–44.

    Article  PubMed  Google Scholar 

  48. O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.

    Article  PubMed  Google Scholar 

  49. Guell X, Schmahmann JD, Gabrieli J, Ghosh SS. Functional gradients of the cerebellum. Elife. 2018;7:e36652.

  50. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Abe M, Hanakawa T. Functional coupling underlying motor and cognitive functions of the dorsal premotor cortex. Behav Brain Res. 2009;198:13–23.

    Article  PubMed  Google Scholar 

  52. Schubotz RI, Anwander A, Knösche TR, von Cramon DY, Tittgemeyer M. Anatomical and functional parcellation of the human lateral premotor cortex. Neuroimage. 2010;50:396–408.

    Article  PubMed  Google Scholar 

  53. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.

    Article  PubMed  Google Scholar 

  54. Schulz R, Wessel MJ, Zimerman M, Timmermann JE, Gerloff C, Hummel FC. White Matter Integrity of Specific Dentato-Thalamo-Cortical Pathways is Associated with Learning Gains in Precise Movement Timing. Cereb Cortex. 2015;25:1707–14.

    Article  PubMed  Google Scholar 

  55. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98:676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Andrews-Hanna JR, Smallwood J, Spreng RN. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann N Y Acad Sci. 2014;1316:29–52.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hu D, Shen H, Zhou Z. Functional asymmetry in the cerebellum: a brief review. Cerebellum. 2008;7:304–13.

    Article  PubMed  Google Scholar 

  59. Schmahmann JD. The cerebellum and cognition. Neurosci Lett. 2019;688:62–75.

    Article  CAS  PubMed  Google Scholar 

  60. Strata P, Provini L, Redman S. On the concept of spinocerebellum. Proc Natl Acad Sci U S A. 2012;109:E622 author reply E623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Makris N, Schlerf JE, Hodge SM, Haselgrove C, Albaugh MD, Seidman LJ, et al. MRI-based surface-assisted parcellation of human cerebellar cortex: an anatomically specified method with estimate of reliability. Neuroimage. 2005;25:1146–60.

    Article  PubMed  Google Scholar 

  62. Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. Neuroimage. 2010;49:2045–52.

    Article  CAS  PubMed  Google Scholar 

  63. Sereno MI, Diedrichsen J, Tachrount M, Testa-Silva G, d'Arceuil H, De Zeeuw C. The human cerebellum has almost 80% of the surface area of the neocortex. Proc Natl Acad Sci U S A. 2020;117:19538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Steele CJ, Anwander A, Bazin PL, Trampel R, Schaefer A, Turner R, et al. Human Cerebellar Sub-millimeter Diffusion Imaging Reveals the Motor and Non-motor Topography of the Dentate Nucleus. Cereb Cortex. 2017;27:4537–48.

    CAS  PubMed  Google Scholar 

  65. Bernard JA, Peltier SJ, Benson BL, Wiggins JL, Jaeggi SM, Buschkuehl M, et al. Dissociable functional networks of the human dentate nucleus. Cereb Cortex. 2014;24:2151–9.

    Article  PubMed  Google Scholar 

  66. Middleton FA, Strick PL. Cerebellar output channels. Int Rev Neurobiol. 1997;41:61–82.

    Article  CAS  PubMed  Google Scholar 

  67. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186–98.

    Article  CAS  PubMed  Google Scholar 

  68. Sarwar T, Ramamohanarao K, Zalesky A. Mapping connectomes with diffusion MRI: deterministic or probabilistic tractography? Magn Reson Med. 2019;81:1368–84.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Data were provided by the Human Connectome Project, MGH-USC Consortium (principal investigators: Bruce R. Rosen, Arthur W. Toga and Van Wedeen; U01MH093765), funded by the NIH Blueprint Initiative for Neuroscience Research grant; the National Institutes of Health grant P41EB015896; and the Instrumentation grants S10RR023043, 1S10RR023401, and 1S10RR019307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Guang Zhao.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Fig. S1

Major afferent and efferent fibers of the left cerebellar lobules. a The left cerebellar anterior lobe was connected with the spinal cord and brainstem through the ICP. b-c The cortico-ponto-cerebellar afferents from contralateral cerebrum projected to the cerebellar anterior lobe through the MCP. d-e The efferents of d-DRTT from the cerebellar anterior lobe were the minority. f The efferents of ipsilateral CTC tracts passing through the SCP were much more in number than the decussating counterparts. g-h For the left cerebellar hemisphere, the fibers from the posterior lobe projecting to the motor and premotor cerebral cortex through d-DRTT were much more than the fibers from the anterior lobe. ICP, inferior cerebellar peduncle; MCP, middle cerebellar peduncle; d-DRTT, decussating dentato-rubro-thalamic tract; CTC, cerebello-thalamo-cerebral; SCP, superior cerebellar peduncle. (PNG 1337 kb).

High resolution image (TIF 8672 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, SQ., Wei, PH., Fan, XT. et al. Delineating the Decussating Dentato-rubro-thalamic Tract and Its Connections in Humans Using Diffusion Spectrum Imaging Techniques. Cerebellum 21, 101–115 (2022). https://doi.org/10.1007/s12311-021-01283-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01283-2

Keywords

Navigation