Skip to main content
Log in

Exploring genetic diversity and ascertaining genetic loci associated with important fruit quality traits in apple (Malus × domestica Borkh.)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Genetic diversity is the primary source of variability in any crop improvement program, and the diverse germplasm of any crop species represents an important genetic resource for gene or allele mining to meet future needs. Huge genetic and phenotypic diversity is present in the apple gene pool, even though, breeding programs have been mainly focused on a few traits of interests, which have resulted in the reduction of the diversity in the cultivated lines of apple. Therefore, the present study was carried out on 70 diverse apple genotypes with the objective of analyzing the genetic diversity and to identify the genetic loci associated with important fruit quality traits. A total of 140 SSR primers were used to characterize the 70 genotypes of apples, out of which only 88 SSRs were found to be polymorphic. The PIC values varied from 0.03 to 0.75. The value of MI, EMR, and RP varied from 0.03 to 3.5, 0.5 to 5.0, and 1.89 to 6.74, respectively. The dendrogram and structure analysis divided all the genotypes into two main groups. In addition to this, large phenotypic variability was observed for the fruit quality traits under study indicated the suitability of the genotypes for association studies. Altogether 71 novel MTAs were identified for 10 fruit quality traits, of which 15 for fruit length, 15 for fruit diameter, 12 for fruit weight, 2 for total sugar, 2 for TSS, 4 for reducing sugar, 5 for non-reducing sugar, 5 for fruit firmness, 5 for fruit acidity and 6 for anthocyanin, respectively. Consistent with the physicochemical evaluation of traits, there was a significant correlation coefficient among different fruit quality characters, and many common markers were found to be associated with these traits (fruit diameter, length, TSS, total sugar, acidity and anthocyanin, respectively) by using the different modeling techniques (GLM, MLM). The inferred genetic structure, diversity pattern and the identified MTAs will be serving as resourceful grounds for better predictions and understanding of apple genome towards efficient conservation and utilization of apple germplasm for facilitating genetic improvement of fruit quality traits. Furthermore, these findings also suggested that association mapping could be a viable alternative to the conventional QTL mapping approach in apple.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrama HA, Eizenga GC (2008) Molecular diversity and genome-wide linkage disequilibrium patterns in a worldwide collection of Oryza sativa and its wild relatives. Euphytica 160:339–355

    Article  CAS  Google Scholar 

  • Ahmed N, Mir JI, Mir RR et al (2012) SSR and RAPD analysis of genetic diversity in walnut (Juglans regia L.) genotypes from Jammu and Kashmir, India. Physiol Mol Biol Plants 18:149–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attri BL, Sharma TVRS, Singh DB, Nagesh P (1999) Genetic variability and correlation studies in mango collections of South Andaman. Indian J Hortic 56:144–148

    Google Scholar 

  • Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1:e60. https://doi.org/10.1371/journal.pgen.0010060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7:781–791

    Article  CAS  PubMed  Google Scholar 

  • Buckler E, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5:107–111

    Article  CAS  PubMed  Google Scholar 

  • Bhat ZA, Dhillon WS, Kuldeep S (2013) Genetic diversity studies on some pear genotypes using simple sequence repeats (SSR) derived from apple and pear. Indian J Hortic 70:1–6

    Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE et al (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Bao W, Wuyun T, Li T et al (2017) Genetic diversity and population structure of Prunus mira (Koehne) from the Tibet plateau in China and recommended conservation strategies. PLoS ONE 12:685–693

    Article  Google Scholar 

  • Cockerham CC (1973) Analyses of gene frequencies. Genetics 74:679–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardon RL, Bell JI (2001) Association study designs for complex disease. Nat Rev Genet 2:91–99

    Article  CAS  PubMed  Google Scholar 

  • Cao K, Wang L, Zhu G et al (2012) Genetic diversity, linkage disequilibrium and association mapping analyses of peach (Prunus persica L.) landraces in China. Tree Genet Genomes 8:975–990

    Article  Google Scholar 

  • Cai D, Xiao Y, Yang W et al (2014) Association mapping of six yield-related traits in rapeseed (Brassica napus L.). Theor Appl Genet 127:85–96

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Sun R, Sun H et al (2014) Mapping of quantitative trait loci corroborates independent genetic control of apple size and shape. Sci Hortic 174:126–132

    Article  Google Scholar 

  • Cappellin L, Farneti B, Guardo D et al (2015) QTL analysis coupled with PTR-ToF-MS and candidate gene-based association mapping validate the role of Md-AAT1 as a major gene in the control of flavor in apple fruit. Plant Mol Biol Rep 33:239–252

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JJ (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19:11–15

    Google Scholar 

  • Dar JA, Wani A, Dhar MK (2019) Assessment of the genetic diversity of apple (Malus x domestica Borkh.) cultivars grown in the Kashmir valley using microsatellite markers. Science 31:194–201

    Google Scholar 

  • Ding J, Ali F, Li CG et al (2015) Genome-wide association mapping reveals novel sources of resistance to northern corn leaf blight in maize. BMC Plant Biol 15(1):1

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • FAO (2021) Production Year Book. Food and Agriculture Organization of the United Nations, Rome. http://faostat.fao.org

  • Fazio G, Kviklys D, Robinson T (2009) QTL mapping of root architectural traits in apple rootstocks. HortScience 44:986–987

    Google Scholar 

  • Faramarzi S, Yadollahi A, Soltani BM (2014) Preliminary evaluation of genetic diversity among Iranian red fleshed apples using microsatellite markers. J Agric Sci Technol 16:373–384

    Google Scholar 

  • Fazeli S, Sheidai M, Farahani F, Noormohammadi Z (2015) Looking for genetic diversity in Iranian apple cultivars (Malus × domesticaBorkh.). J Sci Islam Repub Iran 27:205–215

    Google Scholar 

  • Forcada C, Oraguzie N, ChinWoS R et al (2015) Identification of genetic loci associated with quality traits in almonds via association mapping. PLoS ONE 10(6):e0127656. https://doi.org/10.1371/journal.pone.0127656

    Article  CAS  Google Scholar 

  • Ferreira V, Ramos-Cabrer AM, Carnide V et al (2016) Genetic pool structure of local apple cultivars from Portugal assessed by microsatellites. Tree Genet Genomes 12:36–51

    Article  Google Scholar 

  • Gianfranceschi L, Seglias N, Tarchini R et al (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076

    Article  CAS  Google Scholar 

  • Gustavsson L, Brantestam AK, Sehic J, Nybom H (2008) Molecular characterization of indigenous Swedish apple cultivars based on SSR and S-allele analysis. Hereditas 145:99–112

    Article  Google Scholar 

  • Ganopouls IV, Konstantinos K, Ioannis C et al (2011) Genetic diversity, structure and fruit trait associations in Greek sweet cherry cultivars using microsatellite based (SSR/ISSR) and morpho-physiological markers. Euphytica 181:237–251

    Article  Google Scholar 

  • Geethanjali S, AnithaRukmani J, Rajakumar D et al (2017) Genetic diversity, population structure and association analysis in coconut (Cocos nucifera L.) germplasm using SSR markers. Plant Genet Resour Charact Util 16(02):156–168

    Article  Google Scholar 

  • Harborne JB (1973) Phytochemical methods. Chapman and Haul International Ed. Toppan Co. Ltd. Tokyo, Japan

  • Hummer KE, Janick J (2009) Rosaceae: taxonomy, economic importance, genomics. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Springer, New York, pp 1–17

    Google Scholar 

  • Han Y, Zheng D, Vimolmangkang S et al (2011) Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome. J Exp Bot 62:5117–5130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ipek M, Ipek A, Seker M, Gul MK (2015) Association of SSR markers with contents of fatty acids in olive oil and genetic diversity analysis of an olive core collection. Genet Mol Res 14:2241–2252

    Article  CAS  PubMed  Google Scholar 

  • Janick J, Moore JN (1996). Fruit breeding. Volume I: tree and tropical fruits. Wiley, New York

  • Jha SN, Rai DR, Sharma R (2012) Physico-chemical quality parameters and overall quality index of apple during storage. J Food Sci Technol 49:594–600

    Article  PubMed  Google Scholar 

  • Kadam DM (2013) Phenotyping of mango (Mangifera indica L.) cultivars for growth, flowering and fruiting characters. M.Sc. thesis, Division of Fruits and Horticultural Technology, Indian Agricultural Research Institute, New Delhi

  • Kang HM, Zaitlen NA, Wade CM et al (2008) Efficient control of population structure in model organism association mapping. Genetics 17:1709–1723

    Article  Google Scholar 

  • Kumar TP, Philip J, Johnkutty I (2006) Variability in physico-chemical characteristics of mango genotypes in northern Kerala. J Trop Agric 44:57–60

    Google Scholar 

  • Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4:647–661

    Article  Google Scholar 

  • Krzysztof P, Rutkowski MB, Konopacki P (2008) Nondestructive determination of ‘Golden Delicious’ apple quality and harvest maturity. J Fruit Ornam Plant Res 16:39–52

    Google Scholar 

  • King RA, Harris SL, Karp A (2010) Characterization and inheritance of nuclear microsatellite loci for use in population studies of the allotetraploid Salix albaSalix fragilis complex. Tree Genet Genomes 6(2):247–258

    Article  Google Scholar 

  • Kumar S, Garrick DJ, Bink M et al (2013) Novel genomic approaches unravel genetic architecture of complex traits in apple. BioMed Cent Genom 14:393–407

    CAS  Google Scholar 

  • Khan MA, Olsen KM, Sovero V et al (2014) Fruit quality traits have played critical roles in domestication of the apple. Plant Genome 7(3):1–18

    Article  CAS  Google Scholar 

  • Kunihisa M, Moriya S, Abe K et al (2014) Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop. Breed Sci 64(3):240–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klabunde GHF, Junkes CFO, Tenfen SZA et al (2016) Genetic diversity and apple leaf spot disease resistance characterization assessed by SSR markers. Crop Breed Appl Biotechnol 16:189–196

    Article  Google Scholar 

  • Kim J, Oh Y, Lee G et al (2019) Genetic diversity, structure and Core Collection of Korean apple germplasm using simple sequence repeat markers. Hortic J 88:329–337

    Article  CAS  Google Scholar 

  • Kumar K, Anjoy P, Sahu S (2022) Single trait versus principal component based association analysis for flowering related traits in pigeonpea. Sci Rep 12:10453. https://doi.org/10.1038/s41598-022-14568-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal S, Ahmed N, Verma MK (2013) Fruit size contributing traits in pomegranate (Punica granatum) cv. Dholka under temperate condition. Indian J Agric Sci 83:535–541

    Google Scholar 

  • Liang W, Dondini L, Franceschi DP et al (2014) Genetic diversity, population structure and construction of a core collection of apple cultivars from Italian germplasm. Plant Mol Biol Rep 33:458–473

    Article  Google Scholar 

  • Linge CDS, Bassi D, Bianco L et al (2015) Genetic dissection of fruit weight and size in a F2 peach (Prunus persica L. Batsch.) progeny. Mol Breed 35:71–74

    Article  Google Scholar 

  • Lassois L, Denance C, Elisa R et al (2016) Genetic diversity, population structure, parentage analysis and construction of core collections in the French apple germplasm based on SSR markers. Plant Mol Biol Rep 34:827–844

    Article  CAS  Google Scholar 

  • Liu Z, Bao D, Liu D et al (2016) Construction of a genetic linkage map and QTL analysis of fruit-related traits in an F1 Red Fuji Hongrou apple hybrid. Open Life Sci 11:487–497

    Article  CAS  Google Scholar 

  • Lal S, Singh AK, Singh SK et al (2017) Association analysis for pomological traits in mango (Mangifera indica L.) by genic-SSR markers. Trees 2:554–573

    Google Scholar 

  • Larsen B, Migicovsky Z, Jeppesen AA et al (2018) Genome-wide association studies in apple reveal loci for aroma Volatiles, sugar composition, and harvest date. Plant Genome 12:180104–180119

    Article  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van E, Gessler C. 2002. Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Ming J, Gu W (2006) Phenotypic variation of Syringa oblata Lindl. For Res Chin Acad for 19:199–204

    Google Scholar 

  • Mather KA, Caicedo AL, Polato NR et al (2007) The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177:2223–2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myles S, Peiffer J, Brown PJ et al (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mingyang F, Fengwang M (2012) Characterization of the genetic relationships among biotypes of Malus prunifolia using simple sequence repeat marker. Sci Hortic 146:169–174

    Article  Google Scholar 

  • McClure KA, Gardner KM, Toivonen PMA et al (2016) QTL analysis of soft scald in two apple populations. Hortic Res 3:16043–16050

    Article  PubMed  PubMed Central  Google Scholar 

  • McClure KA, Gong Y, Song J et al (2019) Genome-wide association studies in apple reveal loci of large effect controlling apple polyphenols. Hortic Res 6:107–119

    Article  PubMed  PubMed Central  Google Scholar 

  • Mir JI, Jan A, Rashid M et al (2020) Genetic variability studies for various morphological and quality traits in apple. Indian J Hortic 77:227–236

    Article  Google Scholar 

  • Meland M, Aksic MF, Froynes O et al (2022) Genetic identity and diversity of apple accessions within a candidate collection for the Norwegian National clonal germplasm repository. Horticulturae 8:630–648

    Article  Google Scholar 

  • Negi S, Sharma G, Sharma R (2020) Introgression and confirmation of everbearing trait in strawberry (Fragaria x ananassa Duch.). Physiol Mol Biol Plants 26:2407–2416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann K, Kobiljski B, Dencic S et al (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58

    Article  Google Scholar 

  • NHB (2017) National Horticulture Board. nhb.gov.in/horticulture

  • Omasheva ME, Pozharsky AS, Smailov BB et al (2018) Genetic diversity of apple cultivars growing in Kazakhstan. Russ J Genet 54:176–187

    Article  CAS  Google Scholar 

  • Ouni R, Zborowska A, Sehic J et al (2020) Genetic diversity and structure of Tunisian local pear germplasm as revealed by SSR markers. Hortic Plant J 6:61–70

    Article  Google Scholar 

  • Patocchi A, Fernandez-Fernandez F, Evans K, Silfverberg-Dilworth E, Matasci CL, Gobbin D, Rezzonico F, Boudichevskaia A, Dunemann F, Stankiewicz-Kosyl M, Matisse F, Soglio V, Gianfranceschi L, Durel CE, Toller C, Cova V, Mott D, Komjanc M, Barbaro E, Costa F, Voorrips RE, Yamamoto T, Gessler C, Van de Weg WE (2007) Development of a set of apple SSRs markers spanning the apple genome, genotyping of HiDRAS plant material and validation of genotypic data. Acta Hort 814(814):603–608

    Google Scholar 

  • Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira-Lorenzo S, Ramos-Cabrer AM, Diaz-Hernandez MB (2007) Evaluation of genetic identity and variation of local apple cultivars (Malus × domestica) from Spain using microsatellite markers. Genet Resour Crop Evol 54:405–420

    Article  CAS  Google Scholar 

  • Pereira-Lorenzo S, Ramos-Cabrer AM, Fischer M (2009) Breeding apple (Malus × domesticaBorkh.). Breed Plant Tree Crops Temp Species 53:33–81

    Article  Google Scholar 

  • Powell W, Morgante M, Andre C et al (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Potts SM, Khan MA, Han Y et al (2014) Identification of quantitative trait loci (QTLs) for fruit quality traits in apple. Plant Mol Biol Rep 32:109–116

    Article  CAS  Google Scholar 

  • Pflanz M, Gebbers R, Zude M (2016) Influence of tree-adapted flower thinning on apple yield and fruit quality considering cultivars with different predisposition in fructification. Acta Hortic 1130:605–612

    Article  Google Scholar 

  • Pereira-Lorenzo S, Urrestarazu J, Ramos-Cabrer AM et al (2017) Analysis of the genetic diversity and structure of the Spanish apple genetic resources suggests the existence of an Iberian gene pool. Ann Appl Biol 171:424–440

    Article  Google Scholar 

  • Perveen N, Cholin SS, Hipparagi K et al (2019) Correlation and path coeffiecient analysis for morphological and biochemical traits in diverse pomegranate (Punica granatum L.) genotypes. Curr J Appl Sci Technol 35:1–9

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranganna S (1995) Handbook of analysis and quality control for fruits and vegetable production. Tata McGraw Hill Publishing Company Limited, New Delhi, pp 1–21

    Google Scholar 

  • Roldan-Ruiz I, Dendauw J, Bockstaele EV et al (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134

    Article  CAS  Google Scholar 

  • Stich B, Melchinger AE (2009) Comparison of mixed-model approaches for association mapping in rapeseed, potato, sugar beet, maize and Arabidopsis. BioMed Cent Genom 10:94–99

    Google Scholar 

  • Skendrovic BM, Ivancic K, Druzic J et al (2007) Chemical and sensory characteristics of three apple cultivars (Malus × domestica Borkh.). Agric Conspec Sci 72:317–322

    Google Scholar 

  • Sharma P, Sharma R (2018) DNA fingerprinting of peach (Prunus persica) germplasm in accessing genetic variation using arbitrary oligonucleotide markers system. Indian J Biotechnol 17(3):484–491

    CAS  Google Scholar 

  • Sharma R, Sharma P (2019) Assessing genetic variation using arbitrary oligonucleotide markers system in apple (Malus x domestica Borkh.) germplasm of Indian Himalayan region. Indian J Hortic 76(4):581–589

    Article  Google Scholar 

  • Stich B, Melchinger AE, Frisch M, Maurer HP, Heckenberger M (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet 111:723–730

    Article  PubMed  Google Scholar 

  • Silfverberg-Dilworth E, Matasci C, Weg WE et al (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224

    Article  Google Scholar 

  • Sharma R, Modgil M, Sharma P, Saini U (2012) Agrobacterium-mediated gene transfer studies in apple (Malus x domestica Borkh.) rootstock MM106. Indian J Hortic 69(1):1–6

    Article  Google Scholar 

  • Sa KJ, Park JY, Choi SH et al (2015) Genetic diversity, population structure, and association mapping of agronomic traits in waxy and normal maize inbred lines. Genet Mol Res 14:7502–7518

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Du Z, Ren J et al (2015) Association of SSR markers with functional traits from heat stress in diverse tall fescue accessions. BMC Plant Biol 15:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma H, Sharma P, Sharma R (2021a) Transferability of apple and pear SSRs to other temperate pome fruit crops of family Rosaceae. Genetika 53:195–208

    Article  Google Scholar 

  • Sharma M, Sharma R, Sharma NC, Rana N, Sharma P, Chauhan N (2021b) Graft-induced variations based on morphological, biochemical and molecular parameters in apple (Malus x domestica Borkh.). Indian J Exp Biol 59:339–348

    CAS  Google Scholar 

  • Singh KN, Rawat S, Kumar K (2022) Identification of significant marker-trait associations for Fusarium wilt resistance in a genetically diverse core collection of safflower using AFLP and SSR markers. J Appl Genet 63:447–462

    Article  CAS  PubMed  Google Scholar 

  • Thakur A, Sharma R, Dhiman SR, Negi R, Singh A (2022) Genetic diversity analysis in chrysanthemum (Dendranthema grandiflora Tzvelev) using SSR markers: corroborating mutant behaviour of newly evolved genotypes. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-022-01438-y

    Article  Google Scholar 

  • Urrestarazu J, Miranda C, Santesteban LG, Royo JB (2012) Genetic diversity and structure of local apple cultivars from Northeastern Spain assessed by microsatellite markers. Tree Genet Genomes 8:1163–1180

    Article  Google Scholar 

  • Urrestarazu J, Denance C, Ravon E et al (2016) Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flowering apple at the European level. BioMed Cent Plant Biol 16:130–150

    Article  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 89:833–839

    Article  Google Scholar 

  • Xu Y, Cheng W, Xiong C et al (2021) Genetic diversity and association analysis among germplasms of Diospyros Kaki in Zhejiang province based on SSR markers. Forests 12:422–432

    Article  Google Scholar 

  • Yang C, Sha G, Wei T et al (2021) Linkage map and QTL mapping of red flesh locus in apple using a R1R1 ×R6R6 population. Hortic Plant J 7:393–400

    Article  CAS  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

  • Zhang C, Chen X, Yuan Z et al (2009) Method of constructing core collection for Malus sieversii in Xinjiang, China using molecular markers. Am Chem Soc 8:276–284

    Google Scholar 

  • Zhang P, Li J, Li X, Liu X, Zhao X, Lu Y (2011) Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers. Public Libr Sci 6:27–65

    CAS  Google Scholar 

  • Zhang Q, Li J, Zhao Y et al (2012) Evaluation of genetic diversity in chinese wild apple species along with apple cultivars using SSR markers. Plant Mol Biol Rep 30:539–546

    Article  CAS  Google Scholar 

  • Zhao J, Huang L, Ren X et al (2017) Genetic variation and association mapping of seed-related traits in cultivated peanut (Arachishypogaea L.) using single-locus simple sequence repeat markers. Front Plant Sci 8:2105–2118

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhen Q, Fang T, Peng Q et al (2018) Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation. Hortic Res 5:14–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Yarraa R, Cao H (2020) SSR based association mapping analysis for fatty acid content in coconut flesh and exploration of the elite alleles in Cocos nucifera L. Curr Plant Biol 21:100141–100147

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Indian Council of Agricultural Research (ICAR), New Delhi, India for proving funds through a central assistance scheme.

Author information

Authors and Affiliations

Authors

Contributions

Germplasm collection, investigation, data compilation, writing—original draft preparation: P; Conceptualization, methodology, overall supervision, manuscript editing and finalization: RS; SSR analysis, manuscript reviewing, editing and finalization: PS; Physico-chemical characterization: NCS; Association mapping data analysis and manuscript finalization: KK, KNS and VB; Germplasm maintenance: NG, NC.

Corresponding author

Correspondence to Rajnish Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12298_2023_1382_MOESM1_ESM.tif

Fig S1 Regression plot showing the relationships between fruit length and other measured variables significant at P<0.05 and marginally significant at P<0.10. The units are scaled and centered (TIF 389 KB)

12298_2023_1382_MOESM2_ESM.tif

Fig S2 Regression plot showing the relationships between fruit diameter and other measured variables significant at P<0.05 and marginally significant at P<0.10.The units are scaled and centered (TIF 364 KB)

12298_2023_1382_MOESM3_ESM.tif

Fig S3 Regression plot showing the relationships between fruit weight, fruit shape index, firmness and other measured variables significant at P < 0.05 and marginally significant at P < 0.10. The units are scaled and centered (TIF 521 KB)

12298_2023_1382_MOESM4_ESM.tif

Fig S4 Regression plot showing the relationships between, TSS, total sugar, reducing sugar and acidity and other measured variables significant at P < 0.05 and marginally significant at P < 0.10.The units are scaled and centered (TIF 520 KB)

Supplementary file5 (DOC 670 KB)

Supplementary file6 (XLS 182 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poonam, Sharma, R., Sharma, P. et al. Exploring genetic diversity and ascertaining genetic loci associated with important fruit quality traits in apple (Malus × domestica Borkh.). Physiol Mol Biol Plants 29, 1693–1716 (2023). https://doi.org/10.1007/s12298-023-01382-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-023-01382-w

Keywords

Navigation