Skip to main content
Log in

Comprehensive transcriptome profiling to identify genes involved in pistil abortion of Japanese apricot

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Flower development exists as a key period in the angiosperms life cycle and the proper development is considered with its reproductive success. Pistil abortion is one of the widely distributed aspects of berry plants and its basic mechanism in Japanese apricot is quite unclear and needs thorough investigation. The present study was carried out to get a deep insight into the pistil abortion mechanism in Japanese apricot using a transcriptomic approach. A large number of DEGs were identified from different development stages of normal and abortive pistils. Pair-wise comparison analysis was performed as LY1 vs DQD1, LY2 vs DQD2, and LY3 vs DQD3 and produced 3590, 2085, and 2286 transcripts, respectively. The Gene Ontology (GO) showed that different metabolic processes, plant hormones, developmental processes, and photosystem-related genes were involved in pistil abortion. The pathway analysis revealed significant enrichment of plant hormone's signal transduction and circadian rhythm pathways. Furthermore, transcription factors such as MYB, MADS-box, and NAC family showed lower expression in abortive pistils. The current study presents a new strategy for advanced research and understanding of the pistil abortion process in Japanese apricot and provides a possible reference for other deciduous fruit trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The sequencing data were deposited to NCBI-GEO under the accession numbers GSE141096.

References

  • Achard P et al (2009) Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol 19(14):1188–1193

    Article  CAS  PubMed  Google Scholar 

  • Alabadí D, Blázquez MA, Carbonell J, Ferrándiz C, Pérez-Amador MA (2009) Instructive roles for hormones in plant development. Int J Develop Biology 53(8):1597

    Article  CAS  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of auxin in regulating Arabidopsis flower development. Planta 223(2):315–328

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla ER et al. (2010) Flower development The Arabidopsis Book/American Society of Plant Biologists 8

  • Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13(9):627–639

    Article  PubMed  CAS  Google Scholar 

  • Arathi H, Ganeshaiah K, Shaanker RU, Hegde S (1999) Seed abortion in Pongamia pinnata (Fabaceae). Am J Bot 86(5):659–662

    Article  CAS  PubMed  Google Scholar 

  • Bai S, Saito T, Sakamoto D, Ito A, Fujii H, Moriguchi T (2013) Transcriptome analysis of Japanese pear (Pyrus pyrifolia Nakai) flower buds transitioning through endodormancy. Plant Cell Physiol 54(7):1132–1151

    Article  CAS  PubMed  Google Scholar 

  • Balcke GU et al (2012) An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues. Plant Method 8(1):47

    Article  CAS  Google Scholar 

  • Becker A, Theißen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogen Evol 29(3):464–489

    Article  CAS  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Annal Stat 29:1165–1188

    Article  Google Scholar 

  • Beppu K, Kataoka I (2011) Studies on pistil doubling and fruit set of sweet cherry in warm climate. J Japan Soc Hortic Sci 80(1):1–13

    Article  Google Scholar 

  • Bland JM, Altman DG (1995) Multiple significance tests. Bonferroni Method Bmj 310(6973):170

    CAS  PubMed  Google Scholar 

  • Blázquez MA, Ahn JH, Weigel D (2003) A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet 33(2):168–171

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL (2000) The YABBY gene family and abaxial cell fate. Current Opin Plant Biol 3(1):17–22

    Article  CAS  Google Scholar 

  • Caarls L, Pieterse CM, Van Wees S (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci 6:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Causier B, Cook H, Davies B (2003) An antirrhinum ternary complex factor specifically interacts with C-function and SEPALLATA-like MADS-box factors. Plant Mol Biol 52(5):1051–1062

    Article  CAS  PubMed  Google Scholar 

  • Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20(7):1760–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler J (2011) The hormonal regulation of flower development. J Plant Growth Regul 30(2):242–254

    Article  CAS  Google Scholar 

  • Chen L et al (2017) Transcriptomic analysis reveals candidate genes for female sterility in pomegranate flowers. Front Plant Sci 8:1430

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng H et al (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131(5):1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Cucinotta M, Colombo L, Roig-Villanova I (2014) Ovule development, a new model for lateral organ formation. Front Plant Sci 5:117

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Aloia M et al (2011) Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J 65(6):972–979

    Article  PubMed  CAS  Google Scholar 

  • Digel B, Pankin A, von Korff M (2015) Global transcriptome profiling of developing leaf and shoot apices reveals distinct genetic and environmental control of floral transition and inflorescence development in barley. Plant Cell 27(9):2318–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler S et al (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18(17):4679–4688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao SM, Ma K, Du XH, Li FL (2002) Advances in Research on Xanthoceras Sorbifolia. Chin Bull Bot 19(3):296–301

    Google Scholar 

  • Gao Z, Wang S, Zhang Z (2006) Comparative study on flower and fruit characteristics of 29 varieties in Japanese apricot (Prunus mume Sieb et Zucc). Jiangsu Agri Sci 6:231–233

    Google Scholar 

  • Gao Z, Shi T, Luo X, Zhang Z, Zhuang W, Wang L (2012) High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot. BMC Genom 13(1):371

    Article  CAS  Google Scholar 

  • Guo S, Iqbal S, Ma R, Song J, Yu M, Gao Z (2018) High-density genetic map construction and quantitative trait loci analysis of the stony hard phenotype in peach based on restriction-site associated DNA sequencing. BMC Genom 19(1):612

    Article  CAS  Google Scholar 

  • Han Y, Zhang C, Yang H, Jiao Y (2014) Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis. Proc Nat Acad Sci 111(18):6840–6845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou J-H, Gao Z-H, Zhang Z, Chen S-M, Ando T, Zhang J-Y, Wang X-W (2011) Isolation and characterization of an AGAMOUS homologue PmAG from the Japanese apricot (Prunus mume Sieb et Zucc). Plant Mol Biol Rep 29(2):473–480

    Article  CAS  Google Scholar 

  • Huang Y-J et al (2013) Use of transcriptome sequencing to understand the pistillate flowering in hickory (Carya cathayensis Sarg). BMC Genom 14(1):691

    Article  CAS  Google Scholar 

  • Imaizumi T (2010) Arabidopsis circadian clock and photoperiodism: time to think about location. Curr Opin Plant Biol 13(1):83–89

    Article  CAS  PubMed  Google Scholar 

  • Iqbal S et al (2020b) Genome-wide analysis of PmTCP4 transcription factor binding sites by ChIP-Seq during pistil abortion in Japanese apricot. Plant Genome 13(3):e20052

    Article  CAS  PubMed  Google Scholar 

  • Iqbal S et al (2020a) Identification and expression profiling of sugar transporter genes during sugar accumulation at different stages of fruit development in apricot. Gene. https://doi.org/10.1016/j.gene.2020.144584

    Article  PubMed  Google Scholar 

  • Jain M (2011) Next-generation sequencing technologies for gene expression profiling in plants. Brief Funct Genom 11(1):63–70

    Article  CAS  Google Scholar 

  • Kardailsky I et al (1999) Activation tagging of the floral inducer FT. Science 286(5446):1962–1965

    Article  CAS  PubMed  Google Scholar 

  • Kaur-Sawhney R, Tiburcio A, Galston A (1988) Spermidine and flower-bud differentiation in thin-layer explants of tobacco. Planta 173(2):282–284

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Nam HG, Lim PO (2016) Regulatory network of NAC transcription factors in leaf senescence. Curr Opin Plant Biol 33:48–56

    Article  PubMed  CAS  Google Scholar 

  • Kocsis M, Jakab G (2008) Analysis of BABA (β-aminobutyric acid)-induced female sterility in Arabidopsis flowers. Acta Biol Szegediensis 52(1):247–249

    Google Scholar 

  • Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6(9):688–698

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Tyagi AK, Sharma AK (2011) Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Mol Genet Genom 285(3):245–260

    Article  CAS  Google Scholar 

  • Lee BH, Ko J-H, Lee S, Lee Y, Pak J-H, Kim JH (2009) The Arabidopsis GRF-INTERACTING FACTOR gene family performs an overlapping function in determining organ size as well as multiple developmental properties. Plant Physiol 151(2):655–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf 12(1):323

    Article  CAS  Google Scholar 

  • Li L et al (2015) Transcriptomic insights into antagonistic effects of gibberellin and abscisic acid on petal growth in Gerbera hybrida. Front Plant Sci 6:168

    PubMed  PubMed Central  Google Scholar 

  • Liang G, He H, Li Y, Wang F, Yu D (2014) Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis. Plant Physiol 164(1):249–258

    Article  CAS  PubMed  Google Scholar 

  • Lillecrapp A, Wallwork M, Sedgley M (1999) Female and male sterility cause low fruit set in a clone of theTrevatt’variety of apricot (Prunus armeniaca). Sci Hortic 82(3–4):255–263

    Article  Google Scholar 

  • Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG (2010) Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot 61:1419–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C et al (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135(8):1481–1491

    Article  CAS  PubMed  Google Scholar 

  • Liu N et al (2014) Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. J Exp Bot 65(9):2507–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Kim H, Zhong S, Chen H, Hu Z, Zhou B (2014) De novo transcriptome assembly for rudimentary leaves in Litchi chinesis Sonn and identification of differentially expressed genes in response to reactive oxygen species. BMC Genom 15(1):805

    Article  CAS  Google Scholar 

  • Lugassi N, Nakayama N, Bochnik R, Zik M (2010) A novel allele of FILAMENTOUS FLOWER reveals new insights on the link between inflorescence and floral meristem organization and flower morphogenesis. BMC Plant Biol 10(1):131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng Y, Ma S, Shao J, Sun J, Ma B, Wang H (2012) Effects of spraying 6-BA on axillary bud growth and the dynamic changes of endogenous hormones in’Tianhong 2’Fuji nursery apple trees. Acta Horticulturae Sinica 39(5):837–844

    CAS  Google Scholar 

  • Ni X, Xue S, Iqbal S, Wang W, Ni Z, Khalil-ur-Rehman M, Gao Z (2018) Candidate genes associated with red colour formation revealed by comparative genomic variant analysis of red-and green-skinned fruits of Japanese apricot (Prunus mume). PeerJ 6:e4625

  • Ó’Maoiléidigh DS, Graciet E, Wellmer F (2014) Gene networks controlling A rabidopsis thaliana flower development. New Phytol 201(1):16–30

    Article  PubMed  Google Scholar 

  • Omidbakhshfard MA, Proost S, Fujikura U, Mueller-Roeber B (2015) Growth-regulating factors (GRFs): a small transcription factor family with important functions in plant biology. Mol Plant 8(7):998–1010

    Article  CAS  PubMed  Google Scholar 

  • Origin(Pro), Version Number (2019) OriginLab Corporation, Northampton, MA, USA

  • Owen SJ, Abrams SR (2009) Measurement of plant hormones by liquid chromatography–mass spectrometry. In: Plant Hormones. Springer, pp 39–51

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405(6783):200–203

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Luo T, Zhou J, Niu B, Lei N, Tang L, Chen F (2008) Cloning and quantification of expression levels of two MADS-box genes from Momordica charantia. Biol Plant 52(20):222–230

    Article  CAS  Google Scholar 

  • Perata P (2013) APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199(3):639–649

    Article  PubMed  CAS  Google Scholar 

  • Porri A, Torti S, Romera-Branchat M, Coupland G (2012) Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development 139(2):2198–2209

    Article  CAS  PubMed  Google Scholar 

  • Reale L et al (2009) Morphological and cytological development and starch accumulation in hermaphrodite and staminate flowers of olive (Olea europaea L). Sex Plant Reprod 22(3):109–119

    Article  CAS  PubMed  Google Scholar 

  • Robinson-Beers K, Pruitt RE, Gasser CS (1992) Ovule development in wild-type Arabidopsis and two female-sterile mutants. Plant Cell 4(10):1237–1249

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosati A, Caporali S, Paoletti A, Famiani F (2011) Pistil abortion is related to ovary mass in olive (Olea europaea L). Sci Hortic 127(4):515–519

    Article  Google Scholar 

  • Shan H et al (2012) Heterologous expression of the chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana. Mol Biotechnol 51(2):160–173

    Article  CAS  PubMed  Google Scholar 

  • Sharma R et al (2012) Expression dynamics of metabolic and regulatory components across stages of panicle and seed development in indica rice. Funct Integr Genomics 12(2):229–248

    Article  CAS  PubMed  Google Scholar 

  • Shi T, Zhuang W, Zhang Z, Sun H, Wang L, Gao Z (2012) Comparative proteomic analysis of pistil abortion in Japanese apricot (Prunus mume Sieb et Zucc). J Plant Physiol 169(13):1301–1310

    Article  CAS  PubMed  Google Scholar 

  • Shi T et al (2020) Analyzing Differentially Expressed Genes and Pathways Associated with Pistil Abortion in Japanese Apricot via RNA-Seq. Genes 11(9):1079

    Article  CAS  PubMed Central  Google Scholar 

  • Simpson GG (2003) Evolution of flowering in response to day length: flipping the CONSTANS switch. BioEssays 25(9):829–832

    Article  CAS  PubMed  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296(5566):285–289

    Article  CAS  PubMed  Google Scholar 

  • Singh VK, Garg R, Jain M (2013) A global view of transcriptome dynamics during flower development in chickpea by deep sequencing. Plant Biotechnol J 11(6):691–701

    Article  CAS  PubMed  Google Scholar 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to rome. Cell Mol Life Sci 68(12):2013–2037

    Article  CAS  PubMed  Google Scholar 

  • Sun L et al (2013) Genome-wide characterization and linkage mapping of simple sequence repeats in mei (Prunus mume Sieb et Zucc). PLoS ONE 8(3):e59562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theissen G, Melzer R (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Annal Bot 100(3):603–619

    Article  Google Scholar 

  • Ulger S, Sonmez S, Karkacier M, Ertoy N, Akdesir O, Aksu M (2004) Determination of endogenous hormones, sugars and mineral nutrition levels during the induction, initiation and differentiation stage and their effects on flower formation in olive. Plant Growth Regul 42(1):89–95

    Article  CAS  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci 97(21):11632–11637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vining KJ et al (2015) The floral transcriptome of E ucalyptus grandis. New Phytol 206(4):1406–1422

    Article  CAS  PubMed  Google Scholar 

  • Wang S (2008) Preliminary studies on differences of related characteristics between perfect flower and imperfect flower and protemics in Japanese apricot Nanjing: Nanjing Agricultural University

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2009) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138

    Article  CAS  PubMed  Google Scholar 

  • Wong CE, Singh MB, Bhalla PL (2013) The dynamics of soybean leaf and shoot apical meristem transcriptome undergoing floral initiation process. PLoS ONE 8(6):e65319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Shi T, Iqbal S, Zhang Y, Liu L, Gao Z (2019) Genome-wide discovery and characterization of flower development related long non-coding RNAs in Prunus mume. BMC Plant Biol 19(1):64

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye Q, Zhu W, Li L, Zhang S, Yin Y, Ma H, Wang X (2010) Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc Natl Acad Sci 107(13):6100–6105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan Z, Zhang D (2015) Roles of jasmonate signalling in plant inflorescence and flower development. Curr Opin Plant Biol 27:44–51

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133(16):3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Zhang H-N et al (2014) Transcriptomic analysis of floral initiation in litchi (Litchi chinensis Sonn) based on de novo RNA sequencing. Plant Cell Rep 33(10):1723–1735

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Li Y, Xin D, Chen W, Shao X, Wang Y, Guo W (2015) RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus). Gene 555(2):362–376

    Article  CAS  PubMed  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61(7):1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31772282 and 31971703), the National Key Research and Development Program of China (2018YFD1000107), China Postdoctoral Science Foundation (2018 M640497), and Jiangsu Postdoctoral Science Research Foundation (2018K216C) for funding this research in materials collection, data analysis, and experiment.

Author information

Authors and Affiliations

Authors

Contributions

ZG and SI conceived and designed the study. SI performed the experiment, analyzed data and wrote the whole manuscript. NX, BY. FH and ZP assist in sample collection and data analysis. ST and SA and DC revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Zhihong Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, S., Pan, Z., Hayat, F. et al. Comprehensive transcriptome profiling to identify genes involved in pistil abortion of Japanese apricot. Physiol Mol Biol Plants 27, 1191–1204 (2021). https://doi.org/10.1007/s12298-021-01019-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-01019-w

Keywords

Navigation