Skip to main content
Log in

The Hormonal Regulation of Flower Development

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Homeotic genes comprising the ABCE classes partly detail the genetic networks that control aspects of floral organ initiation, development, and architecture, but less is known about how these gene functions are translated into changes at the cellular level in growth and cellular differentiation that are involved in the formation of diverse floral organs with specific shapes and sizes. Hormones are the principal transducers of genetic information, and due to recent advances in understanding hormone function in floral development, it is timely to review some of these findings. Flower development is the result of a regulated balance between meristem size and coordination and organ initiation. Floral meristem size is regulated by cytokinin, gibberellin, and auxin, and auxin plays a major role in organ initiation and organogenesis. How hormones contribute to the development of each organ is partly known, with stamen development reliant on almost all hormones, petal development is affected by gibberellins, auxin, and jasmonic acid, and gynoecium development is predominantly regulated by auxin. Furthermore, the interconnections between genetic hierarchies and hormones are being elucidated, and as almost all hormone groups are implicated in floral development, points of hormone crosstalk are being revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abas L, Benjamins R, Malenica N, Paciorek T, Wiśniewska J, Mouliner-Anzola JC, Sieberen T, Friml J, Luschnig C (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8:249–256

    PubMed  CAS  Google Scholar 

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    PubMed  CAS  Google Scholar 

  • Aloni R, Schwalm K, Langhans K, Ullrich CI (2003) Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis. Planta 216:853–941

    Google Scholar 

  • Aloni R, Aloni E, Langhaus M, Ullrich CI (2006) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328

    PubMed  CAS  Google Scholar 

  • Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell 5:569–579

    PubMed  CAS  Google Scholar 

  • Bak S, Tax FE, Reldmann KA, Galbraith DW, Feyereisen R (2001) CYP83B1, a Cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:101–111

    PubMed  CAS  Google Scholar 

  • Barazesh S, McSteen P (2008) Hormonal control of grass inflorescence development. Trends Plant Sci 13:656–662

    PubMed  CAS  Google Scholar 

  • Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057–4067

    PubMed  CAS  Google Scholar 

  • Bennett M, Alvarez J, Bossinger G, Smyth DR (1995) Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J 8:505–520

    CAS  Google Scholar 

  • Bernier G, Périlleux C (2005) A physiological overview of the genetics of flowering time control. Plant Biotechnol J 3:3–16

    PubMed  CAS  Google Scholar 

  • Bhalerao RP, Bennett MJ (2003) The case for morphogens in plants. Nat Cell Biol 5:939–943

    PubMed  CAS  Google Scholar 

  • Blázquez MA, Green R, Nilsson O, Sussman MR, Weigel D (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10:791–800

    PubMed  Google Scholar 

  • Bossinger G, Smyth DR (1996) Initiation patterns of flower and floral organ development in Arabidopsis thaliana. Development 122:1093–1102

    PubMed  CAS  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    PubMed  CAS  Google Scholar 

  • Brewer PB, Howles PA, Dorian K, Griffith ME, Ishida T, Kaplan-Levy RN, Kilinc A, Smyth DR (2004) PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower. Development 131:4035–4045

    PubMed  CAS  Google Scholar 

  • Brioudes F, Joly C, Szécsi J, Varaud E, Leroux J, Bellvert F, Bertrand C, Bendahmane M (2009) Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. Plant J 60:1070–1080

    PubMed  CAS  Google Scholar 

  • Bull-Hereñu K, Claßen-Bockhoff R (2010) Open and closed inflorescences: more than simple opposites. J Exp Bot. doi:10.1093/jxb/erq262

  • Busch MA, Bomblies K, Weigel D (1999) Activation of a floral homeotic gene in Arabidopsis. Science 285:585–587

    PubMed  CAS  Google Scholar 

  • Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774

    PubMed  CAS  Google Scholar 

  • Chandler J (2009) Auxin as compère in plant hormone crosstalk. Planta 231:1–12

    PubMed  CAS  Google Scholar 

  • Chapple C (1998) Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu Rev Plant Physiol Plant Mol Biol 49:311–343

    PubMed  CAS  Google Scholar 

  • Cheng Y, Zhao Y (2007) A role for auxin in flower development. J Integr Plant Biol 49:99–104

    CAS  Google Scholar 

  • Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055–1064

    PubMed  CAS  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    PubMed  CAS  Google Scholar 

  • Cheng Y, Qin G, Dai X, Zhao Z (2007) NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. Proc Natl Acad Sci USA 104:18825–18829

    PubMed  CAS  Google Scholar 

  • Cheng Y, Qin G, Dai X, Zhao Y (2008) NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis. Proc Natl Acad Sci USA 105:21017–21022

    PubMed  CAS  Google Scholar 

  • Cheng H, Song S, Xiao L, Soo HM, Cheng Z, Xie D, Peng J (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5:e1000440

    PubMed  Google Scholar 

  • Clark SE, Running MP, Meyerowitz EM (1993) CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119:397–418

    PubMed  CAS  Google Scholar 

  • Clark SE, Running MP, Meyerowitz EM (1995) CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121:2057–2067

    CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    PubMed  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    PubMed  CAS  Google Scholar 

  • Cowling RJ, Kamiya Y, Seto H, Harberd NP (1998) Gibberellin dose-response regulation of GA4 gene transcript levels in Arabidopsis. Plant Physiol 117:1195–1203

    PubMed  CAS  Google Scholar 

  • Crone W, Lord EM (1994) Floral initiation and development in wildtype Arabidopsis thaliana (Brassicaceae) and in the organ identity mutants apetala2–1 and agamous-1. Can J Bot 72:384–401

    Google Scholar 

  • Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273:1239–1241

    PubMed  CAS  Google Scholar 

  • D’Agostino IB, Kieber JJ (1999) Molecular mechanisms of cytokinin action. Curr Opin Plant Biol 2:359–364

    PubMed  Google Scholar 

  • Davis S (2009) Integrating hormones into the floral-transition pathway of Arabidopsis thaliana. Plant Cell Environ 32:1201–1210

    PubMed  CAS  Google Scholar 

  • Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–1384

    PubMed  CAS  Google Scholar 

  • Ditta G, Pinyopich A, Robles P, Pealz S, Yanovsky M (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940

    PubMed  CAS  Google Scholar 

  • Dodsworth S (2009) A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Dev Biol 336:1–9

    PubMed  CAS  Google Scholar 

  • Duan QH, Wang DH, Xu ZH, Bai SN (2008) Stamen development in Arabidopsis is arrested by organ-specific overexpression of a cucumber ethylene synthesis gene CsACO2. Planta 228:537–543

    PubMed  CAS  Google Scholar 

  • Ecklund DM, Ståldal V, Valsecchi I, Cierlik I, Eriksson C, Hiratsu K, Ohme-Takagi M, Sundström JF, Thelander M, Ezcurra I, Sundberg E (2010) The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell 22:349–363

    Google Scholar 

  • Ellis CM, Nagpall P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) Auxin Response Factor1 and Auxin Response Factor2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574

    PubMed  CAS  Google Scholar 

  • Eriksson S, Stransfeld L, Adamski NM, Breuninger H, Lenhard M (2010) KLUH/CYP78A5-dependent growth signaling coordinates floral organ growth in Arabidopsis. Curr Biol 20:527–532

    PubMed  CAS  Google Scholar 

  • Estruch JJ, Granell A, Hansen G, Prinsen E, Redig P, Van Onckelen H, Schwarz-Sommer Z, Sommer H, Spena A (1993) Floral development and expression of floral homeotic genes are influenced by cytokinins. Plant J 4:379–384

    PubMed  CAS  Google Scholar 

  • Feng XL, Ni WM, Elge S, Mueller-Roeber B, Xu ZH, Xue HW (2006) Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Mol Biol 61:215–226

    PubMed  CAS  Google Scholar 

  • Feys BJF, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jamonate, and resistant to a bacterial pathogen. Plant Cell 6:751–759

    PubMed  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwaz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    PubMed  CAS  Google Scholar 

  • Furutani M, Kajiwara T, Kato T, Treml BS, Stockum C, Torres-Ruiz RA, Tasaka M (2007) The gene MACCHI-BOU 4/ENHANCER OF PINOID encodes a NPH3-like protein and reveals similarities between organogenesis and phototropism at the molecular level. Development 134:3849–3859

    PubMed  CAS  Google Scholar 

  • Galinha C, Bilsborough G, Tsiantis M (2009) Hormonal input in plant meristems: a balancing act. Semin Cell Dev Biol 20:1149–1156

    PubMed  CAS  Google Scholar 

  • Gallivotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt R, McSteen P (2008) Sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci USA 105:15196–15201

    Google Scholar 

  • Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    PubMed  Google Scholar 

  • Giulini A, Wang J, Jackson D (2004) Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430:1031–1034

    PubMed  CAS  Google Scholar 

  • Gómez-Mena C, de Folter S, Costa MMR, Angenent GC, Sablowski R (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132:429–438

    PubMed  Google Scholar 

  • Gordon SP, Chickarmane VS, Ohno C, Meyerowitz E (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci U S A 106:16529–16534

    PubMed  CAS  Google Scholar 

  • Grieneisen VA, Xu J, Marée AFM, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013

    PubMed  CAS  Google Scholar 

  • Grove M, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen D, Steffens GL, Flippen-Anderson J, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    CAS  Google Scholar 

  • Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131:1089–1100

    PubMed  CAS  Google Scholar 

  • Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M (2002) The gibberellin pathway mediates KNOTTED1-type function in plants with different body plans. Curr Biol 12:1557–1565

    PubMed  CAS  Google Scholar 

  • Hay A, Craft J, Tsiantis M (2004) Plant hormones and homeoboxes: bridging the gap? Bioessays 26:395–404

    PubMed  CAS  Google Scholar 

  • Hedden P (1999) Recent advances in gibberellin biosynthesis. J Exp Bot 50:553–563

    CAS  Google Scholar 

  • Heisler MGB, Atkinson A, Bylstra YH, Walsh R, Smyth DR (2001) SPATULA, a gene that controls a development of carpel margin tissues in Arabidopsis encodes a bHLH protein. Development 128:1089–1098

    PubMed  CAS  Google Scholar 

  • Hou X, Hu WW, Shen L, Lee LYC, Tao Z, Han JH, Ju H (2008) Global identification of DELLA target genes during Arabidopsis flower development. Plant Physiol 147:1126–1142

    PubMed  CAS  Google Scholar 

  • Hu Y, Bao F, Li J (2000) Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction. Plant J 24:693–701

    PubMed  CAS  Google Scholar 

  • Hu Y, Xie Q, Chua NH (2003) The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15:1951–1961

    PubMed  CAS  Google Scholar 

  • Hu J, Mitchum MG, Barnaby N, Ayele BT, Ogawa M, Nam E, Lai WC, Hanada A, Alonso JM, Ecker JR, Swain SM, Yamaguchi S, Kamiya Y, Sun T-p (2008) Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20:320–336

    PubMed  CAS  Google Scholar 

  • Huang S, Cerny RE, Qi Y, Bhat D, Aydt CM, Hanson DD, Malloy KP, Ness L (2003) Transgenic studies on the involvement of cytokinin and gibberellin in male development. Plant Physiol 131:1270–1282

    PubMed  CAS  Google Scholar 

  • Hutchison KW, Singer PB, McInnes S, Diaz-Sala C, Greenwood MS (1999) Expansins are conserved in conifers and expressed in hypocotyls in response to exogenous auxin. Plant Physiol 120:827–831

    PubMed  CAS  Google Scholar 

  • Inada S, Shimmen T (2001) Involvement of cortical microtubules in plastic extension regulated by gibberellin in Lemna minor root. Plant Cell Physiol 42:395–403

    PubMed  CAS  Google Scholar 

  • Ito T, Ng KH, Lim TS, Yu H, Meyerowitz EM (2007) The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. Plant Cell 19:3516–3529

    PubMed  CAS  Google Scholar 

  • Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16:S1–S17

    PubMed  CAS  Google Scholar 

  • Jacobsen SE, Olszewski NE (1991) Characterization of the arrest in anther development associated with gibberellin deficiency of the gib-1 mutant of tomato. Plant Physiol 97:409–414

    PubMed  CAS  Google Scholar 

  • Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Philips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15:1560–1565

    PubMed  CAS  Google Scholar 

  • Kahana A, Silberstein L, Kessler N, Goldstein RS, Perl-Treves R (1999) Expression of ACC oxidase genes differs among sex genotypes and sex phases in cucumber. Plant Mol Biol 41:517–528

    PubMed  CAS  Google Scholar 

  • Kanno A, Saeki H, Kameya T, Saedler H, Theissen G (2003) Heterotropic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol Biol 52:831–841

    PubMed  CAS  Google Scholar 

  • Kaufmann K, Muiño JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent G (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 7:1000090

    Google Scholar 

  • Kaufmann K, Wellmer F, Muiño JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueño F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL (2010) Orchestration of floral initiation by APETALA1. Science 328:85–89

    PubMed  CAS  Google Scholar 

  • Kleine-Vehn J, Huang F, Naramoto S, Zhang J, Michniewicz M, Offringa R, Friml J (2009) PIN auxin efflux carrier polarity is regulated by PINOID kinase-mediated recruitment into GNOM-independent trafficking in Arabidopsis. Plant Cell 21:3839–3849

    PubMed  CAS  Google Scholar 

  • Koornneef M, van der Veen JH (1980) Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 58:257–263

    Google Scholar 

  • Krizek BA, Fletcher J (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698

    PubMed  CAS  Google Scholar 

  • Kuppusamy KT, Walcher CL, Nemhauser J (2009) Cross-regulatory mechanisms in hormone signaling. Plant Mol Biol 69:375–381

    PubMed  CAS  Google Scholar 

  • Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655

    PubMed  CAS  Google Scholar 

  • Kuusk S, Sohlberg JJ, Ecklund M, Sundberg E (2006) Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent manner. Plant J 47:99–111

    PubMed  CAS  Google Scholar 

  • Lamb RS, Hill TA, Tan QK, Irish VF (2002) Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development 129:2079–2086

    PubMed  CAS  Google Scholar 

  • Laux T, Mayer KF, Berger J, Jürgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    PubMed  CAS  Google Scholar 

  • Lenhard M, Bohnert A, Jürgens G, Laux T (2001) Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105:805–814

    PubMed  CAS  Google Scholar 

  • Leyser O (2005) Auxin distribution and plant pattern formation: how many angels can dance on the point of PIN? Cell 121:819–822

    PubMed  CAS  Google Scholar 

  • Li X, Qin G, Chen Z, Gu H, Qu LJ (2008) A gain-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis. Plant Mol Biol 66:315–327

    PubMed  CAS  Google Scholar 

  • Li XG, Su YH, Zhao XY, Li W, Gao XQ, Zhang XS (2010) Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis. Gene 450:109–120

    PubMed  CAS  Google Scholar 

  • Lindsay DL, Sawhney VP, Bonham-Smith PC (2006) Cytokinin-induced changes in CLAVATA1 and WUSCHEL expression temporally coincide with altered floral development in Arabidopsis. Plant Sci 170:1111–1117

    CAS  Google Scholar 

  • Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Somin R, Weigel D (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105:793–803

    PubMed  CAS  Google Scholar 

  • Mandaokar A, Kumar VD, Amway M, Browse J (2003) Microarray and differential display identify genes involved in jasmonate-dependent anther development. Plant Mol Biol 52:775–786

    PubMed  CAS  Google Scholar 

  • Mandaokar A, Thines B, Shin B, Lange BM, Choi G, Koo YJ, Choi YD, Choi G, Browse J (2006) Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilig. Plant J 46:984–1008

    PubMed  CAS  Google Scholar 

  • McSteen P (2010) Auxin and monocot development. Cold Spring Harb Perspect Biol 2(3):a001479

    PubMed  Google Scholar 

  • McSteen P, Malcomber S, Skirpan A, Lunde C, Wu X, Kellogg E, Hake S (2007) Barren inflorescence2 encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. Plant Physiol 144:1000–1011

    PubMed  CAS  Google Scholar 

  • Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275:33712–33717

    PubMed  CAS  Google Scholar 

  • Morita Y, Kyozuka J (2007) Characterisation of OsPID, the rice ortholog of PINOID, and its possible involvement in the control of polar auxin transport. Plant Cell Physiol 48:540–549

    PubMed  CAS  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:111–130

    Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed J (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    PubMed  CAS  Google Scholar 

  • Nemhauser JL, Feldman LJ, Zambryski PC (2000) Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development 127:3877–3888

    PubMed  CAS  Google Scholar 

  • Ng KH, Yu H, Ito T (2009) AGAMOUS controls GIANT KILLER, a multifunctional chromatin modifier in reproductive organ patterning and differentiation. PLoS Biol 7:e1000251

    PubMed  Google Scholar 

  • Ogawa T, Uchimiya H, Yamada MK (2007) Mutual regulation of Arabidopsis thaliana ethylene-responsive element binding protein and a plant floral homeotic gene, APETALA2. Ann Bot 99:239–244

    PubMed  CAS  Google Scholar 

  • Olszewski NE, Sun T, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism and response pathways. Plant Cell S2002:s61–s80

    Google Scholar 

  • Østergaard L (2008) Don’t leaf now. The making of a fruit. Curr Opin Plant Biol 12:1–6

    Google Scholar 

  • Pagnussat GC, Alante-Saez M, Bowman J, Sundaresan V (2009) Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte. Science 324:1684–1689

    PubMed  CAS  Google Scholar 

  • Peer WA, Banyopadhyay A, Blakeslee JJ, Makam SN, Chen RJ, Masson PH, Murphy AS (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16:1898–1911

    PubMed  CAS  Google Scholar 

  • Pekker I, Alvarez JP, Esched Y (2005) Auxin response factors mediate Arabidopsis organ symmetry via modulation of Kanadi activity. Plant Cell 17:2899–2910

    PubMed  CAS  Google Scholar 

  • Pelaz S, Tapia-López R, Alvarez-Buylla ER, Yanovsky M (2001) Conversion of leaves into petals in Arabidopsis. Curr Biol 11:182–184

    PubMed  CAS  Google Scholar 

  • Pfluger J, Zambryski P (2004) The role of SEUSS in auxin response and floral organ patterning. Development 131:4697–4707

    PubMed  CAS  Google Scholar 

  • Przemeck GK, Mattsson J, Hardtke CS, Sung ZR, Berleth T (1996) Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200:229–237

    PubMed  CAS  Google Scholar 

  • Rampey RA, LeClere S, Kowalczyk M, Ljung K, Sandberg G, Bartel B (2004) A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiol 135:978–988

    PubMed  CAS  Google Scholar 

  • Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99:1271–1274

    PubMed  CAS  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    PubMed  CAS  Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    PubMed  CAS  Google Scholar 

  • Rieu I, Ruiz-Rivero O, Fernadez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG, Phillips AL, Hedden P (2008) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504

    PubMed  CAS  Google Scholar 

  • Růžička K, Ljung K, Vanneste S, Podhorska R, Beeckman T, Friml J, Benkova E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    PubMed  Google Scholar 

  • Sablowski R (2010) Genes and functions controlled by floral identity genes. Semin Cell Dev Biol 21:94–99

    PubMed  CAS  Google Scholar 

  • Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2006) The Auxin Response Factor 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133:251–261

    PubMed  CAS  Google Scholar 

  • Sessions RA, Zambryski PC (1995) Arabidopsis gynoecium structure in the wild type and in ettin mutants. Development 121:1519–1532

    PubMed  CAS  Google Scholar 

  • Sessions RA, Nemhauser JL, McCall A, Roe JL, Feldman KA, Zambryski PC (1997) ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 124:4481–4491

    PubMed  CAS  Google Scholar 

  • Silverstone AL, Chang C-w, Krol E, Sun T-p (1997) Developmental regulation of the biosynthetic gene GA1 in Arabidopsis thaliana. Plant J 12:9–19

    PubMed  CAS  Google Scholar 

  • Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    PubMed  CAS  Google Scholar 

  • Sohlberg JJ, Myrenås M, Kuusk S, Lagercrantz U, Kowalczyk M, Sandberg G, Sundberg E (2006) STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. Plant J 47:112–123

    PubMed  CAS  Google Scholar 

  • Ståldal V, Sundberg E (2009) The role of auxin in style development and apical-basal patterning of the Arabidopsis thaliana gynoecium. Plant Sig Behav 4:83–85

    Google Scholar 

  • Stinzi A, Browse J (2000) The Arabidopsis male-sterile mutant opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97:12837–12842

    Google Scholar 

  • Szécsi J, Joly C, Bordji K, Varaud E, Cock JM, Dumas C, Bendahmane M (2006) BIGPETALp, a bHLH transcription factor, is involved in the control of Arabidopsis petal size. EMBO J 25:3912–3920

    PubMed  Google Scholar 

  • Tabata R, Ikezaki M, Fujibe T, Aida M, Tian C, Ueno Y, Yamamoto KT, Machida Y, Nakamura K, Ishiguro S (2010) Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol 51:164–175

    PubMed  CAS  Google Scholar 

  • Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    PubMed  CAS  Google Scholar 

  • Tobeña-Santamaria R, Bliek M, Ljung K, Sandberg G, Mol JN, Souer E, Koes R (2002) FLOOZY of Petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. Genes Dev 16:753–763

    PubMed  Google Scholar 

  • Treml BS, Winderl S, Radykewicz R, Herz M, Schweizer G, Hutzler P, Glawischnig E, Torres-Ruiz RA (2005) The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development 132:4063–4074

    PubMed  CAS  Google Scholar 

  • Veit B (2009) Hormone mediated regulation of the shoot apical meristem. Plant Mol Biol 69:397–408

    PubMed  CAS  Google Scholar 

  • Venglat SP, Sawhney VK (1996) Benzylaminopurine induces phenocopies of floral meristem and organ identity mutants in wild-type Arabidopsis plants. Planta 198:480–487

    PubMed  CAS  Google Scholar 

  • Vroemen CW, Mordhurst AP, Albrecht C, Kwaaitaal MACJ, De Vries S (2003) The CUP-SHAPED COTLYEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15:1563–1577

    PubMed  CAS  Google Scholar 

  • Wagner D, Sablowski RW, Meyerowitz EM (1999) Transcriptional activation of APETALA1 by LEAFY. Science 285:582–584

    PubMed  CAS  Google Scholar 

  • Wang Z, Liang Y, Li C, Xu Y, Lan L, Zhao D, Chen C, Xu Z, Xue Y, Chong K (2005) Microarray analysis for gene expression involved in anther development in rice (Oryza sativa L.). Plant Mol Biol 58:721–737

    PubMed  CAS  Google Scholar 

  • Weiss J, Delgado-Benarroch L, Egea-Cortines M (2005) Genetic control of floral size and proportions. Int J Dev Biol 49:513–525

    PubMed  CAS  Google Scholar 

  • Wellmer F, Alves-Ferreira M, Dubois A, Riechmann JL, Meyerowitz EM (2004) Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell 16:1314–1326

    PubMed  CAS  Google Scholar 

  • Wellmer F, Alves-Ferreira M, Dubois A, Riechmann JL, Meyerowitz EM (2006) Genome-wide analysis of gene expression during early Arabidopsis flower development. PloS 2:e117

    Google Scholar 

  • Wenzel CL, Schuetz M, Yu Q, Mattsson J (2007) Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J 49:387–398

    PubMed  CAS  Google Scholar 

  • Whipple CJ, Ciceri P, Padilla CM, Ambrose BA, Bandong SL, Schmidt R (2004) Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development 131:6083–6091

    PubMed  CAS  Google Scholar 

  • William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D (2004) Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci USA 101:1775–1780

    PubMed  CAS  Google Scholar 

  • Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G, Guilfoyle TJ, Alonso JM, Ecker JR, Reed JW (2005) NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J 43:118–130

    PubMed  CAS  Google Scholar 

  • Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100:403–408

    PubMed  CAS  Google Scholar 

  • Xu YL, Li L, Gage DA, Zeevaart JA (1998) Feedback regulation of GA5 expression and metabolic engineering of gibberellin levels in Arabidopsis. Plant Cell 11:927–936

    Google Scholar 

  • Yadav SR, Vijayraghavan U (2008) OsMADS1 as a transcriptional regulator of rice floral organ fate affects auxin and cytokinin signaling pathways. Dev Biol 319:587–598

    Google Scholar 

  • Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143:1362–1371

    PubMed  CAS  Google Scholar 

  • Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N (2005) Arabidopsis KNOX proteins activate cytokinin biosynthesis. Curr Biol 15:1566–1571

    PubMed  CAS  Google Scholar 

  • Ye Q, Zhu W, Li L, Zhang S, Yin Y, Ma H, Wenig X (2010) Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc Natl Acad Sci USA 107:6100–6105

    PubMed  CAS  Google Scholar 

  • Yu H, Ito T, Zhao YX, Peng JR, Kumar P, Meyerowitz EM (2004) Floral homeotic genes are targets of gibberellin signaling in flower development. Proc Natl Acad Sci USA 101:7827–7832

    PubMed  CAS  Google Scholar 

  • Zhang J, Nodzyńskia T, Pěnčík A, Rolčík J, Friml J (2010) PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. Proc Natl Acad Sci USA 107:918–922

    PubMed  CAS  Google Scholar 

  • Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU (2010) Hormonal control of the shoot stem-cell niche. Nature 465(7301):1089–1092

    PubMed  CAS  Google Scholar 

  • Ziegelhoffer EC, Medrano LJ, Meyerowitz EM (2000) Cloning of the Arabidopsis WIGGUM gene identifies a role for farnesylation in meristem development. Proc Natl Acad Sci USA 97:7633–7638

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges financial support from the Deutsche Forschungsgemeinschaft via SFB572.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Chandler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandler, J.W. The Hormonal Regulation of Flower Development. J Plant Growth Regul 30, 242–254 (2011). https://doi.org/10.1007/s00344-010-9180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-010-9180-x

Keywords

Navigation