Skip to main content
Log in

Synergistic effect of cytokinin and gibberellins stimulates release of dormancy in tea (Camellia sinensis (L.) O. Kuntze) bud

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Reactivation of dormant meristem in banjhi (dormant) shoots is important to enhance the quality and quantity of tea production. The field grown tea bushes were subjected to treatment with dormancy breaking agents such as potassium nitrate (KNO3), thiourea, sodium nitro prusside (SNP), the phytohormones kinetin (Kn) and gibberellins (GA). The efficacy of Kn and GA were comparatively lesser than KNO3 while the combination of Kn and GA (50 and100 ppm respectively) resulted in better dormancy reduction in tea buds. This observation was supported by our results from gene expression study where accumulation patterns of mRNAs corresponding to histones (H2A, H2B, H3 and H4), cyclins (B2, D1 and D3), cyclin-dependent kinase (CDKA), ubiquitination enzymes (FUS, EXT CE2), cyclophilin, E2F, and tubulin were analyzed during growth-dormancy cycles in tea apical buds under the influence of Kn, GA and their combinations. The level of these mRNAs was low in dormant buds, which was significantly increased by foliar application of GA and Kn combination. The present study indicated that the foliar application of GA in combination with Kn will help to improve quality and quantity of tea production by breaking dormancy and stimulating the bud growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bajji M, MʼHamdi M, Gastiny F et al (2007) Catalase inhibition accelerates dormancy release and sprouting in potato (Solanum tuberosum L.) tubers. Biotechnol Agron Soc Environ 11:121–131

    CAS  Google Scholar 

  • Balasaravanan T, Pius PK, Raj Kumar R et al (2003) Genetic diversity among south Indian tea germplasm (Camellia sinensis, C. assamica and C. assamica spp. lasiocalyx) using AFLP markers. Plant Sci 165:365–372. https://doi.org/10.1016/S0168-9452(03)00196-1

    Article  CAS  Google Scholar 

  • Barua DN (1969) Seasonal Dormancy in Tea (Camellia sinensis L.). Nature 224:514. https://doi.org/10.1038/224514a0

    Article  CAS  Google Scholar 

  • Barua DN, Das SC (1979) Mechanism of growth periodicity in tea [India]. Two A Bud 26:36–40

    Google Scholar 

  • Bond TET (1942) Studies in the vegetative growth and anatomy of the tea plant (Camellia thea Link.) with special reference to the phloem. Ann Bot 6:607–630. https://doi.org/10.1093/oxfordjournals.aob.a088424

    Article  Google Scholar 

  • Brault M, Maldiney R (1999) Mechanisms of cytokinin action. Plant Physiol Biochem 37:403–412. https://doi.org/10.1016/S0981-9428(99)80046-1

    Article  CAS  Google Scholar 

  • Campbell MA, Suttle JC, Sell TW (1996) Changes in cell cycle status and expression of p34cdc2 kinase during potato tuber meristem dormancy. Physiol Plant 98:743–752. https://doi.org/10.1111/j.1399-3054.1996.tb06680.x

    Article  CAS  Google Scholar 

  • Chen Z, Hagler J, Palombella VJ et al (1995) Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev 9:1586–1597

    Article  CAS  Google Scholar 

  • Cleland RE (1999) Nature, occurrence, and functioning of plant hormones. In: Hooykaas PJJ, Hall MA, Libbenga KR (eds) Biochemistry and molecularbiology of plant hormones, 1st edn. Elsevier Science, Amsterdam, pp 3–22

    Chapter  Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76. https://doi.org/10.1146/annurev.pp.42.060191.000415

    Article  CAS  Google Scholar 

  • Devitt ML, Stafstrom JP (1995) Cell cycle regulation during growth-dormancy cycles in pea axillary buds. Plant Mol Biol 29:255–265. https://doi.org/10.1007/BF00043650

    Article  CAS  PubMed  Google Scholar 

  • Dunlap JR, Morgan PW (1977) Reversal of induced dormancy in lettuce by ethylene, kinetin, and gibberellic acid. Plant Physiol 60:222–224

    Article  CAS  Google Scholar 

  • Erez A, Viémont JD, Crabbé J (2000) Bud dormancy: a suggestion for the control mechanism and its evolution, dormancy in plants: from whole plant behaviour to cellular control. UKCAB International, Wallingford

    Google Scholar 

  • Fobert PR, Coen ES, Murphy GJ, Doonan JH (1994) Patterns of cell division revealed by transcriptional regulation of genes during the cell cycle in plants. EMBO J 13:616–624

    Article  CAS  Google Scholar 

  • Fontaine O, Huault C, Pavis N, Billard JP (1994) Dormancy breakage of Hordeum vulgare seeds: effects of hydrogen peroxide and scarification on glutathione level and glutathione reductase activity. Plant Physiol Biochem 32:677–683

    CAS  Google Scholar 

  • Freeman D, Riou-Khamlichi C, Oakenfull EA, Murray JAH (2003) Isolation, characterization and expression of cyclin and cyclin-dependent kinase genes in Jerusalem artichoke (Helianthus tuberosus L.). J Exp Bot 54:303–308

    Article  CAS  Google Scholar 

  • Hao X, Yang Y, Yue C et al (2017) Comprehensive transcriptome analyses reveal differential gene expression profiles of Camellia sinensis axillary buds at para-, endo-, ecodormancy, and bud flush stages. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00553

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Senning M, Hedden P et al (2011) Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin. Plant Physiol 155:776–796. https://doi.org/10.1104/pp.110.168252

    Article  CAS  PubMed  Google Scholar 

  • Horvath DP, Chao WS, Anderson JV (2002) Molecular analysis of signals controlling dormancy and growth in underground adventitious buds of leafy spurge. Plant Physiol 128:1439–1446. https://doi.org/10.1104/pp.010885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Bao F, Li J (2000) Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J 24:693–701

    Article  CAS  Google Scholar 

  • JeleÅ„ska J, Deckert J, Kondorosi E, Legocki AB (2000) Mitotic B-type cyclins are differentially regulated by phytohormones and during yellow lupine nodule development. Plant Sci 150:29–39. https://doi.org/10.1016/S0168-9452(99)00158-2

    Article  Google Scholar 

  • Kabar K (1998) Comparative effects of kinetin, benzyladenine, and gibberellic acid on abscisic acid inhibited seed germination and seedling growth of red pine and arbor vitae. Turk J Bot 22:1–6

    Google Scholar 

  • Khattab HI, Emam MM, Shehata MM (2000) The correlative changes associated with bud dormancy and rooting of cane cuttings in grapevine. Egypt J Biotechnol 7:255–274

    CAS  Google Scholar 

  • Koller D, Mayer AM, Poljakoff-Mayber A, Klein S (1962) Seed germination. Annu Rev Plant Physiol 13:437–464. https://doi.org/10.1146/annurev.pp.13.060162.002253

    Article  CAS  Google Scholar 

  • Krishnaraj T, Gajjeraman P, Palanisamy S et al (2011) Identification of differentially expressed genes in dormant (banjhi) bud of tea (Camellia sinensis (L.) O. Kuntze) using subtractive hybridization approach. Plant Physiol Biochem 49:565–571. https://doi.org/10.1016/j.plaphy.2011.03.011

    Article  CAS  PubMed  Google Scholar 

  • Kulasegarum S (1969) Studies on the dormancy of tea shoots. I. Hormonal stimulation of the growth of dormant buds. Tea Q 40:31–46

    Google Scholar 

  • Lang GA (1987) Dormancy: a new universal terminology. HortScience 22:817–820

    Google Scholar 

  • Lang G, Early J, Martin G, Darnell R (1987) Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22:371–377

    Google Scholar 

  • Mazzitelli L, Hancock RD, Haupt S et al (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58:1035–1045. https://doi.org/10.1093/jxb/erl266

    Article  CAS  PubMed  Google Scholar 

  • Mok MC (1994) Cytokinins and plant development—an overview. In: Mok DWS, Mok MC (eds) Cytokinins chemistry, activity and function. CRC Press, Boca Raton, pp 155–166

    Google Scholar 

  • Nir G, Shulman Y, Fanberstein L, Lavee S (1986) changes in the activity of catalase (EC 1.11.1.6) in relation to the dormancy of grapevine (Vitis vinifera L.) buds. Plant Physiol 81:1140–1142

    Article  CAS  Google Scholar 

  • Noppakoonwong U, Sripinta P, Pasopa P et al (2005) A trial of rest-breaking chemicals on low-chill peach and nectarine. ACIAR Tech Reports Ser 73–80

  • Pérez FJ, Lira W (2005) Possible role of catalase in post-dormancy bud break in grapevines. J Plant Physiol 162:301–308. https://doi.org/10.1016/j.jplph.2004.07.011

    Article  CAS  PubMed  Google Scholar 

  • Rebers M, Romeijn G, Knegt E, Plas LHW (1994) Effects of exogenous gibberellins and paclobutrazol on floral stalk growth of tulip sprouts isolated from cooled and non-cooled tulip bulbs. Physiol Plant 92:661–667. https://doi.org/10.1111/j.1399-3054.1994.tb03037.x

    Article  CAS  Google Scholar 

  • Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JA (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541–1544

    Article  CAS  Google Scholar 

  • Rosin FM, Hart JK, Van Onckelen H, Hannapel DJ (2003) Suppression of a vegetative MADS box gene of potato activates axillary meristem development. Plant Physiol 131:1613–1622. https://doi.org/10.1104/pp.102.012500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossouw JA (2008) Effect of cytokinin and gibberellin on potato tuber dormancy. University of Pretoria, Pretoria

    Google Scholar 

  • Shimizu S, Mori H (1998) Analysis of cycles of dormancy and growth in pea axillary buds based on mRNA accumulation patterns of cell cycle-related genes. Plant Cell Physiol 39:255–262

    Article  CAS  Google Scholar 

  • Soni R, Carmichael JP, Shah ZH, Murray JA (1995) A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 7:85–103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens W, Carr MKV (1990) Seasonal and clonal differences in shoot extension rates and numbers in tea (Camellia sinensis). Exp Agric 26:83. https://doi.org/10.1017/S001447970001543X

    Article  Google Scholar 

  • Suttle JC (2004) Involvement of endogenous gibberellins in potato tuber dormancy and early sprout growth: a critical assessment. J Plant Physiol 161:157–164. https://doi.org/10.1078/0176-1617-01222

    Article  CAS  PubMed  Google Scholar 

  • Tanton TW (1981) The Banjhi (Dormancy) Cycle in Tea (Camellia sinensis). Exp Agric 17:149–156. https://doi.org/10.1017/S001447970001139X

    Article  Google Scholar 

  • Thirugnanasambantham K, Prabu G, Palanisamy S et al (2013) Analysis of dormant bud (Banjhi) specific transcriptome of tea (Camellia sinensis (L.) O. Kuntze) from cDNA library revealed dormancy-related genes. Appl Biochem Biotechnol 169:1405–1417. https://doi.org/10.1007/s12010-012-0070-5

    Article  CAS  PubMed  Google Scholar 

  • Thirugnanasambantham K, Prabu GR, Mandal AKA (2014) Isolation and characterization of cDNA encoding cyclophilin gene from dormant bud of Camellia sinensis (L.) O. Kuntze. 42:256–261

    Google Scholar 

  • Vantard M, Cowling R, Delichère C (2000) Cell cycle regulation of the microtubular cytoskeleton. Plant Mol Biol 43:691–703

    Article  CAS  Google Scholar 

  • Warnes GR, Bolker B, Bonebakker L, Gentleman R, Andy Liaw WH, Lumley T, Maechler M, Magnusson A, Schwartz MV (2015) gplots: Various R programming tools for plotting data. R Package Version 3.0.1. http://cran.r-project.org/package=gplots. Accessed 21 Nov 2019

  • Wei C, Yang H, Wang S et al (2018) Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci 115:E4151–E4158. https://doi.org/10.1073/pnas.1719622115

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:134. https://doi.org/10.1186/1471-2105-13-134

    Article  CAS  Google Scholar 

  • Zhang K, Letham DS, John PC (1996) Cytokinin controls the cell cycle at mitosis by stimulating the tyrosine dephosphorylation and activation of p34cdc2-like H1 histone kinase. Planta 200:2–12

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, UPASI Tea Research Foundation for his encouragement and support during the course of study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abul Kalam Azad Mandal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirugnanasambantham, K., Prabu, G. & Mandal, A.K.A. Synergistic effect of cytokinin and gibberellins stimulates release of dormancy in tea (Camellia sinensis (L.) O. Kuntze) bud. Physiol Mol Biol Plants 26, 1035–1045 (2020). https://doi.org/10.1007/s12298-020-00786-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00786-2

Keywords

Navigation