Skip to main content
Log in

Impact of postharvest exogenous γ-aminobutyric acid treatment on cucumber fruit in response to chilling tolerance

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Low-temperature storage is generally used to extend postharvest lifetime and to inhibit decay of cucumber fruit, but it also enhances the intensity of chilling injury. The capability of γ-aminobutyric acid to enhance antioxidant enzyme activities and reduce chilling injury was studied in cucumber (Cucumis sativus L.) fruit stored at 1 °C for 5 weeks. The purpose of this study was to define if the GABA-induced modification in antioxidant system and phospholipase activity is linked to the reduced chilling injury in cold-stored cucumber fruit. Alleviation of chilling injury by GABA treatment was related to increased content of proline, endogenous GABA and enhanced activities of CAT and SOD, together with reduced activities of PLC, PLD and LOX. We suggest that PLC, LOX and PLD are associated with chilling injury initiation by involvement in a signaling pathway and membrane deterioration. Therefore the results obtained in this study suggest GABA’s potential for postharvest applications for reducing chilling injury symptom in cucumber fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AOS:

Active oxygen species

APX:

Ascorbate peroxidase (EC 1.11.1.11)

CAT:

Catalase (EC 1.11.1.6)

CI:

Chilling injury

EL:

Electrolyte leakage

GABA:

γ-Aminobutyric acid

LOX:

Lipoxygenases (EC 1.13.11)

MDA:

Malonyl-dialdehyde

PLC:

Phospholipase C (EC 3.1.4.11)

SOD:

Superoxide dismutase (EC 1.15.1.1)

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Bargmann BOR, Laxalt AM, Ter Riet B, Testerink C, Merquiol E, Mosblech A, Leon-Reyes A, Pieterse CMJ, Haring MA, Heilmann I, Bartels D, Munnik T (2009) Reassessing the role of phospholipase D in the Arabidopsis wounding response. Plant Cell Environ 32(7):837–850

    Article  CAS  PubMed  Google Scholar 

  • Benjak A, Ercisli S, Vokurka A, Maletic E, Pejic I (2005) Genetic relationships among grapevine cultivars native to Croatia, Greece and Turkey. Vitis 44(2):73–77

    CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation, stress: a review. Ann Bot 91:179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canan I, Gundogdu M, Seday U, Oluk CA, Karasahin Z, Eroglu EC, Yazici E, Unlu M (2016) Determination of antioxidant, total phenolic, total carotenoid, lycopene, ascorbic acid, and sugar contents of Citrus species and mandarin hybrids. Turk J Agric For 40:894–899

    Article  Google Scholar 

  • Cao SF, Zheng YH, Wang KT, Rui HJ, Tanga SS (2009) Effects of 1-methylcyclopropene on oxidative damage, phospholipases and chilling injury in loquat fruit. J Sci Food Agric 89:2214–2220

    Article  CAS  Google Scholar 

  • Celik A, Ercisli S, Turgut N (2007) Some physical, pomological and nutritional properties of kiwifruit cv. Hayward. Int J Food Sci Nutr 58(6):411–418

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalases and peroxidase. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chen JY, He LH, Jiang YM, Wang Y, Joyce DC, Ji ZL, Lu WJ (2008) Role of phenylalanine ammonia-lyase in heat pretreatment-induced chilling tolerance in banana fruit. Physiol Plant 132:318–328

    Article  CAS  PubMed  Google Scholar 

  • Chongchatuporn U, Ketsa S, van Doorn WG (2013) Chilling injury in mango (Mangifera indica) fruit peel: relationship with ascorbic acid concentrations and antioxidant enzyme activities. Postharvest Biol Technol 86:409–417

    Article  CAS  Google Scholar 

  • Deewatthanawong R, Nock JF, Watkins CB (2010a) γ-Aminobutyric acid (GABA) accumulation in four strawberry cultivars in response to elevated CO2 storage. Postharvest Biol Technol 57:92–96

    Article  CAS  Google Scholar 

  • Deewatthanawong R, Rowell P, Watkins CB (2010b) γ-Aminobutyric acid (GABA) metabolism in CO2 treated tomatoes. Postharvest Biol Technol 57:97–105

    Article  CAS  Google Scholar 

  • Ding CK, Wang CY, Gross KC, Smith DL (2002) Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214:895–901

    Article  CAS  PubMed  Google Scholar 

  • Ding ZS, Tian SP, Zheng XL, Zhou ZW, Xu Y (2007) Responses of reactive oxygen metabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress. Physiol Plant 130:112–121

    Article  CAS  Google Scholar 

  • Ercisli S, Tosun M, Duralija B, Voca S, Sengul M, Turan M (2010) Phytochemical content of some black (Morus nigra L.) and purple (Morus rubra L.) mulberry genotypes. Food Technol Biotechnol 48(1):102–106

    CAS  Google Scholar 

  • Gupta MN, Wold F (1980) A convenient spectrophotometric assay for phospholipase D using p-nitrophenyl-phosphocholine as substrate. Lipids 15:594–596

    Article  CAS  Google Scholar 

  • Hatamnia AA, Rostamzad A, Hosseini M, Abbaspour N, Darvishzadeh R, Malekzadeh P, Aminzadeh BM (2016) Antioxidant capacity and phenolic composition of leaves from ten Bene (Pistacia atlantica subsp. kurdica) genotypes. Nat Prod Res 30(5):600–604. doi:10.1080/14786419.2015.1028060

    Article  CAS  PubMed  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hricova A, Fejer J, Libiakova G, Szabova M, Gazo J, Gajdosova A (2016) Characterization of phenotypic and nutritional properties of valuable Amaranthus cruentus L. mutants. Turk J Agric For 40:761–771

    Article  Google Scholar 

  • Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509

    Article  CAS  Google Scholar 

  • Kurioka S, Matsuda M (1976) Phospholipase C assay using p-nitrophenylphosphorylcholine together with sorbitol and its application to studying the metal and detergent requirement of the enzyme. Anal Biochem 75:281–289

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Ahn SJ, Im YJ, Cho K, Chung GC, Cho BH, Han O (2005) Differential impact of low temperature on fatty acid unsaturation and lipoxygenase activity in fig leaf gourd and cucumber roots. Biochem Biophys Res Commun 330:1194–1198

    Article  CAS  PubMed  Google Scholar 

  • Lurie S, Crisosto CH (2005) Chilling injury in peach and nectarine. Postharvest Biol Technol 37:195–208

    Article  Google Scholar 

  • Malekzadeh P (2015) Influence of exogenous application of glycinebetaineon antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.). Physiol Mol Biol Plants 20:133–137

    Article  Google Scholar 

  • Malekzadeh P, Khara J, Heydari R (2012) Effect of exogenous gama-aminobutyric acid on physiological tolerance of wheat seedlings exposed to chilling stress. Iran J Plant Physiol 3(1):611–617

    Google Scholar 

  • Malekzadeh P, Khara J, Heydari R (2014) Alleviating effects of exogenous Gamma-aminobutiric acid on tomato seedling under chilling stress. Physiol Mol Biol Plants 20(1):133–137

    Article  CAS  PubMed  Google Scholar 

  • Mao LC, Pang HG, Wang GZ, Zhu CG (2007) Phospholipase D and lipoxygenase activity of cucumber fruit in response to chilling stress. Postharvest Biol Technol 44:42–47

    Article  CAS  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    Article  CAS  PubMed  Google Scholar 

  • Patterson BD, Mackae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium. Anal Biochem 139:487–492

    Article  CAS  PubMed  Google Scholar 

  • Prasad TK (2001) Mechanisms of chilling injury and tolerance. In: Basra AR (ed) Crop responses and adaptations to temperature. Food Products Press, Binghamton, pp 1–53

    Google Scholar 

  • Promyou S, Ketsa S, van Doorn WG (2008) Hot water treatments delay cold-induced banana peel blackening. Postharvest Biol Technol 48:132–188

    Article  CAS  Google Scholar 

  • Qin GZ, Meng XH, Wang Q, Tian SP (2009) Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis. J Proteome Res 8:2449–2462

    Article  CAS  PubMed  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Rop O, Ercisli S, Mlcek J, Jurikova T, Hoza I (2014) Antioxidant and radical scavenging activities in fruits of 6 sea buckthorn (Hippophae rhamnoides L.) cultivars. Turk J Agric For 38(2):224–232

    Article  Google Scholar 

  • Rui H, Cao S, Shang H, Jin P, Wang K, Zheng Y (2010) Effects of heat treatment on internal browning and membrane fatty acid in loquat fruit in response to chilling stress. J Sci Food Agric 90:1557–1561

    Article  CAS  PubMed  Google Scholar 

  • Sawaki Y, Iuchi S, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H (2009) STOP1 regulates multiple genes that protect arabidopsis from proton and aluminum toxicities. Plant Physiol 150(1):281–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao ZG, Zheng CC (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81

    Article  CAS  PubMed  Google Scholar 

  • Shang H, Cao SH, YangZ Cai Y, Zheng Y (2011) Effect of exogenous γ-Aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage. J Agric Food Chem 59(4):1264–1268

    Article  CAS  PubMed  Google Scholar 

  • Shi SQ, Shi Z, Jiang Z, Qi L, Sun X, Li C (2010) Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production. Plant Cell Environ 33:149–162

    Article  CAS  PubMed  Google Scholar 

  • Sirikesorn L, Ketsa S, van Doorn WG (2013) Low temperature-induced water-soaking of Dendrobium inflorescences: relation with phospholipase D activity, thiobarbaturic-acid-staining membrane degradation products, and membrane fatty acid composition. Postharvest Biol Technol 80:47–55

    Article  CAS  Google Scholar 

  • Song HM, Xu XB, Wang H, Wang HZ, Tao YZ (2010) Exogenous γ-aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings. J Sci Food Agric 90:1410–1416

    Article  CAS  PubMed  Google Scholar 

  • Todd JF, Paliyath G, Thompson JE (1990) Characteristics of a membrane associated lipoxygenase in tomato fruit. Plant Physiol 94:1225–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trobacher CP, Clark SM, Bozzo GG, Mullen RT, DeEll JR, Shelp BR (2013) Catabolism of GABA in apple fruit: subcellular localization and biochemical characterization of two γ-aminobutyrate transaminases. Postharvest Biol Technol 75:106–113

    Article  CAS  Google Scholar 

  • Vicente AR, Martínez GA, Chaves AR, Civello PM (2006) Effect of heat treatment on strawberry fruit damage and oxidative metabolism during storage. Postharvest Biol Technol 40:116–122

    Article  CAS  Google Scholar 

  • Wallace W, Secor J, Schrader LE (1984) Rapid accumulation of γ-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical stress. Plant Physiol 175:170–175

    Article  Google Scholar 

  • Wise RR, Naylor AW (1987) Chilling-enhanced photophylls, chilling-enhanced photooxidation—the peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol 83:272–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe J (2006) Chilling injury in plants—the role of membrane lipid fluidity. Plant Cell Environ 1:241–247

    Article  Google Scholar 

  • Wongsheree T, Ketsa S, van Doorn WG (2009) The relationship between chilling injury and membrane damage in lemon basil (Ocimum × citriodorum) leaves. Postharvest Biol Technol 51:91–96

    Article  CAS  Google Scholar 

  • Xu PL, Guo YK, Bai JG, Shang L, Wang XJ (2008) Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol Plant 132:467–478

    Article  CAS  PubMed  Google Scholar 

  • Xu WT, Peng X, Luo YB, Wang J, Guo X, Huang KL (2009) Physiological and biochemical responses of grapefruit seed extract dip on ‘Redglobe’ grape. LWT Food Sci Technol 42:471–476

    Article  CAS  Google Scholar 

  • Yu C, Zeng L, Sheng K, Chen F, Zhou T, Zheng X, Yu T (2014) γ-Aminobutyric acid induces resistance against Penicillium expansum by priming of defence responses in pear fruit. Food Chem 159:29–37

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Bown AW (1997) The rapid determination of γ-aminobutyric acid. Phytochemistry 44:1007–1009

    Article  CAS  Google Scholar 

  • Zhang C, Fei SZ, Arora R, Hannapel DJ (2010) Ice recrystallization inhibition proteins of perennial rye-grass enhances freezing tolerance. Planta 232:155–169

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Qian C, Chen J, Peng Y, Mao L (2010) Responses of phospholipase D and lipoxygenase to mechanical wounding in postharvest cucumber fruits. J Zhejiang Univ Sci B 11(6):443–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorenc Z, Veberic R, Stampar F, Koron D, Mikulic-Petkovsek M (2016) Changes in berry quality of northern highbush blueberry (Vaccinium corymbosum L.) during the harvest season. Turk J Agric For 40:855–867

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parviz Malekzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malekzadeh, P., Khosravi-Nejad, F., Hatamnia, A.A. et al. Impact of postharvest exogenous γ-aminobutyric acid treatment on cucumber fruit in response to chilling tolerance. Physiol Mol Biol Plants 23, 827–836 (2017). https://doi.org/10.1007/s12298-017-0475-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-017-0475-2

Keywords

Navigation